

Makeup Examination – Sept. 2023 I/II//IV Semester Diploma Examination

ENGINEERING MATHEMATICS (20SC01T)

(Exam Date / Time: 23rd Sep. 2023 / 2.00 PM)

Time: 3 hours

Max Marks: 100

Instructions:	 Answer all questions. Each section carries 20 marks. 	subscribe to ravirnandi	
	Section-I	for solutions	
1 . (a)	$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} and B = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}, \text{ then find } 2A + 3$	<i>B</i> . 4	
¢	If $A = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$ then find $A + A^{T}$ matrix. $A = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$	2] 3]	
(b)	OR	-	
	Find the inverse of the matrix $A = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$	** *	
(c)	Find the adjoint of the matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ OR	5	
Solve the equations $2x+y=1$; $3x+2y=1$ by using Cramer's rule.			
(d)	If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, find AB matrix and OR	d also find $(AB)^{T}$ matrix. 5	
	If $\begin{vmatrix} x & 2 \\ 3 & 4 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 0 & x \end{vmatrix}$ find the value of x.		
	Section-II		
2. (a)	Find the equation of a straight line with slope 5 and OR Write the standard form of equation of straight line with		

Page 1 of 3

12

www.mathswithme.in

Register No.	: QP-Code : 20S	C01T
	a) One point (x_1, y_1) having slope m .	
	b) Two points (x_1, y_1) and (x_2, y_2) .	
(b)	Find the equation straight line passing through two points (3,4) and (5,6) OR	6
	Find equation of straight line passing through the point $(1,2)$ which makes an	angle
	45° With positive direction of x- axis.	C
(c)	Find the acute angle between the lines $x-2y+1=0$ and $2x+6y-5=0$.	5
	OR Prove that the given straight lines 3x-4y-7=0 and 9x-12y-11=0 are parallel.	
(d)	Find the equation of straight line parallel to $5x+6y-10=0$ and passing through t Point (-3, 3)	he 5
	OR	
	Find the equation of the line cutting off equal intercepts and passing through the point (-2, 5)	e
	Section-III	
	2-	
3. (a)	Convert 120° into radian and $\frac{3\pi}{2}$ into degree	4
J. (4)	OR	-
	Prove that $\sin 2A = 2\sin A \cos A$ www.mathswit	hme
	$\tan(45^{\circ} + A) = \frac{1 + \tan A}{1 + \tan A}$	
(b)	Prove that $1 - \tan A$ OR	6
	$\tan A = \frac{5}{12} \operatorname{and} 180^{\circ} < A < 270^{\circ} \text{ then find the value of } \sin A \text{ and } \cos A$	
•		
	Simplify $\frac{\cos(360^{\circ} - A)\tan(360^{\circ} + A)}{\cot(270^{\circ} - A)\sin(90^{\circ} + A)}$	
(c)	OR	5
	$\frac{1-\cos 2A+\sin 2A}{\sin 2A}=\tan A$	
	Prove that $1 + \cos 2A + \sin 2A$	
(4)	Show that $\cos 100^\circ + \cos 80^\circ = 0$	-
(d)	Show that $\cos 100^\circ + \cos 80^\circ = 0$ OR	5
	$\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}.$	
	Show that	
	Section-IV	
	If $y = x^3 + 3\cos x + 4e^x + 2$ then find $\frac{dy}{dx}$	
4. (a)	If $y = x^2 + 3\cos x + 4e^2 + 2$ then find $\frac{1}{dx}$	4

www.mathswithme.in

www.mathswithme.in

23

Register No.	.: QP-Code :	20SC01T
	OR	
	If $y = (x+1)(x-1)$ then find $\frac{dy}{dx}$.	
(b)	Find the maximum and minimum value of a function $y = 2x^3 - 15x^2 + 36x + 6$ OR	6
	If $s = t^3 - 2t^2 + 6t + 8$ is the equation of motion of a particle in meters, find the acceleration at the end of 3 secs	
(c)	If $y = a\cos mx + b\sin mx$ then prove that $\frac{d^2y}{dx^2} + m^2y = 0$. OR	5
tei:	Find the derivative of a function $\frac{1+\sin x}{1-\sin x}$ w.r.t.x.	
(d)	Find the equation of tangent to the curve $y=1-x^3$ at the point (2, 3) OR	5
	If $y = (1 + x^2) \tan^{-1} x$ then find $\frac{dy}{dx}$.	
- (:	Section-V	
5. (a)	Evaluate $\int \tan^2 x dx$	4
(:	Integrate the function $\sin x + \frac{1}{x} + x^3 - 7$ w.r.t.x.	
(b)	Find area bounded by the curve $y = x^2 + 2$, the x-axis and the ordinates at and x=2	x=1 6
<u>(</u> 2.	OR Find the volume of the solid generated by revolving the line $y^2=2x+1$ about between the ordinates x=0 and x=2	t x-axis
(c)	Evaluate the indefinite integral $\int (x \sin x) dx$ using integration by parts.	5
	Evaluate $\int_{0}^{1} \frac{(\tan^{-1} x)^4}{1 + x^2} dx$	
(4)	$\int \frac{x+1}{x+1} dx$	
(d)	Evaluate the indefinite integral $\int x^2 + 2x + 1$ using integration by subs method. OR	titution 5
('	Evaluate $\int \sin^3 x dx$	
,		
CN	Page 3 of 3	
	subscribe to	
(*	ravirnandi	
	channel for so	olutions
	alus -	