Register No. : QP-C	Code : 20SC51'
---------------------	----------------

Makeup Examination – Sept. 2023 V Semester Diploma Examination

PAPER-1: APPLIED MATHEMATICS (20SC51T)

(Exam Date / Time: 23rd Sep. 2023 / 9.00 AM)

Time: 3 hours Max Marks: 100

SECTION - I

1.(a) Find the angle between the radius vector and the tangent for the curve $r^2 = a^2 \cos 2\theta$ (10)

(b) Find the Pedal equation of the curve $\frac{2a}{r} = 1 + \cos\theta$ (10)

2.(a) Show that the pair of curves $r = a^{e^{\theta}}$, $r^{e^{\theta}} = b$ intersect each other orthogonally. (10)

(b) Find the radius of curvature of the curve x = acost, y = asint. (10)

SECTION-II

3. (a) Obtain Maclaurin's series expansion of $\log (1 + x)$ upto x^4 (8)

(b) Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$ (6)

(c) Solve $(D^2 + 5D + 6)y = e^x$ (6)

4. (a) Expand $\sin(e^x - 1)$ using Maclaurin's series expansion upto the term containing x^4 (8)

 $tany \frac{dy}{dx} + tanx = cosy cos^2 x$ (6)

(c) Solve $\frac{d^2y}{dx^2}$ + y =secx tanx using variation of parameters (6)

SECTION - III

5. (a) Solve the following system of equation by Gauss Elimination method: (10)

2x - y + x = 9,

x + y + z = 6

x - y + z = 2

(b) Evaluate
$$\int_0^1 \int_X^{\sqrt{x}} xy \, dy \, dx$$
 by changing order of integration. (10)

6. (a) Solve by Gauss-Jordan Method

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$

$$4x + 3y + 2z = 16$$

(b) Evaluate
$$\int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} \int_{z=0}^{z=\sqrt{1-x^2-y^2}} xyz \, dz \, dy \, dx$$
 (10)

SECTION - IV

7. (a) If
$$\vec{F} = (x + y + 1)i + j - (x + y)k$$
 then show that $\vec{F} \cdot curl\vec{F} = 0$ (6)

(b) Form the PDE by eliminating arbitrary constants a and b from
$$z = (x - a)^2 + (y - b)^2$$
(6)

(c) Solve
$$p + q = a$$
 by Lagrange's method. (8)

8. (a) Find the directional derivatives of
$$\phi = xy^2 + yz^3$$
 at $(2, -1, 1)$ along $i + 2j + 2k$ (7)

(b) Evaluate
$$\int_{\mathcal{C}} (xy + y^2) dx + x^2 dy$$
, where is \mathcal{C} is the closed curve of the region bounded by $y = x$ and $y = x^2$ using Green's Theorem. (6)

SECTION - V

- 9. (a) Compute the fourth root of 12 correct to 3 decimal places using Regula Falsi method. (10)
 - (b) Using Lagrange's Interpolation formula, fit a polynomial for following data to find y at x = 4 (10)

Χ	0	1	2	5
У	2	3	12	147

10. (a) Evaluate
$$\int_0^1 \frac{dx}{1+x^2}$$
 by using Simpson's $\frac{1}{3}$ rule taking 4 equal strips and hence deduce an appropriate value of $\frac{\pi}{1}$.

(b) Apply Runge Kutta fourth order method to find an appropriate value of y when x=0.2 given that
$$\frac{dy}{dx} = x + y$$
 and y = 1 when x=0