V Semester Diploma Make up Examination,
September – 2023

COURSE NAME: APPLIED MATHEMATICS

COURSE CODE: 20SC51T

SCHEME & MODEL ANSWERS OF VALUATION

Download by mathswithme.in

	SECTION-I	
1 (a)	Find the angle between the radius vector and the tangent for the curve $r^2 = a^2 \cos 2\theta$.	(10)
Solution	Given, $r^2 = a^2 \cos 2\theta$	
	WKT, Angle between the radius vector and the tangent for the curve is $tan\emptyset = r \cdot \frac{d\theta}{dr}$	1
	Take log on both sides $logr^2 = log(a^2cos2\theta)$	2
	$\log^2 = \log a^2 + \log \cos 2\theta$	
	$2\log r = 2\log a + \log \cos 2\theta$	
	Differentiating wrt θ	
	$\frac{d(2logr)}{d\theta} = \frac{d(2loga)}{d\theta} + \frac{d(logcos2\theta)}{d\theta}$	
	$2.\frac{1}{r}\frac{dr}{d\theta} = 0 + \frac{1}{\cos 2\theta}\sin 2\theta. 2$	
	$\frac{1}{r}\frac{dr}{d\theta} = \frac{-\sin 2\theta}{\cos 2\theta}$	4
	$\frac{dr}{d\theta} = -r \frac{-\sin 2\theta}{\cos 2\theta}$	
	$\frac{d\theta}{dr} = -\frac{1}{r} \cdot \frac{\cos 2\theta}{\sin 2\theta}$	
	$\frac{d\theta}{dr} = -\frac{1}{r}\cot 2\theta$	
	Now, $tan\emptyset = r.\frac{d\theta}{dr}$	1
	$tan\varphi = r.\left(-\frac{1}{r}cot2\theta\right)$	
	$tan\emptyset = -cot2\theta$	1
	$\emptyset = \frac{\pi}{2} + 2\theta$	1
Do	wnload by mathswithme.in	

4.00	OUG . 203031173EF1 2023 MARLOF EXAMS AFFLIED MATHEMATICS MODEL ANSWERS	(4.0)
1 (b)	Find the Pedal equation of the curve $\frac{2a}{r} = 1 + \cos \theta$	(10)
Solution:	Given	
Solution.	$1 + \cos\theta \dots (1)$	
	WKT, Pedal Equation of the curve is,	
	$p = r \sin \emptyset$	
		1
	$\frac{2a}{r} = 2\cos^2\frac{\theta}{2}$	
		1
	$cos \frac{\theta}{2} = \sqrt{\frac{a}{r}}$	1
	$\sim 2 \sim \sqrt{r}$	1
	Take log on both sides for (1)	
	$log2a - \log r = \log (1 + \cos \theta)$	1
	Differentiating wrt θ	
	$-\frac{1}{r}\frac{dr}{d\theta} = \frac{1}{1+\cos\theta}\sin\theta$	
	$\frac{dr}{d\theta} = r. \frac{\sin\theta}{1 + \cos\theta}$	
	$\frac{d\theta}{dr} = \frac{1}{r} \cdot \frac{1 + \cos\theta}{\sin\theta}$	2
	$tan\emptyset = r.\frac{1}{r} \cdot \frac{1 + cos\theta}{sin\theta}$	1
	$=\frac{1+\cos\theta}{\sin\theta} = \frac{2\cos^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$	
	$tan\varphi = \cot\frac{\theta}{2}$	
	$\pi \theta$	
	$\emptyset = \frac{\pi}{2} - \frac{\theta}{2}$	
	Now,	1
	$p = r \sin \varphi$	
	$=r\sin\left(\frac{\pi}{2}-\frac{\theta}{2}\right)$	
	$=rcos\frac{\theta}{2} = r\sqrt{\frac{a}{r}}$	
	$p = \sqrt{ar}$	1
	$p^2 = ar$ Download by	1
	mathewithma in	

2 (a)

Show that the pair of curves $r = ae^{\theta}$, $re^{\theta} = b$ intersect each other orthogonally.

Solution:

$$r = ae^{\theta}$$

Take log on both sides

$$\log r = \log a + \log e^{\theta}$$

$$\log r = \log a + \theta$$

Differentiating wrt θ

$$\frac{1}{r}\frac{dr}{d\theta} = 1$$

$$r\frac{d\theta}{dr}=1$$

$$tan\emptyset = r.\frac{d\theta}{dr}$$

$$tan \emptyset_1 = 1$$

$$\emptyset_1 = \frac{\pi}{4}$$

$$\alpha = |\emptyset_2 - \emptyset_1|$$

$$=\left|-\frac{\pi}{4}-\frac{\pi}{4}\right|$$

 $\alpha = \frac{\pi}{2}$ Thus,

Pair of curves intersect each other orthogonally.

(10)

3

4

 $re^{\theta} = b$

Take log on both sides

$$\log r + \log e^{\theta} = \log b$$

$$logr + \theta = logb$$

Differentiating wrt θ

$$\frac{1}{r}\frac{dr}{d\theta} + 1 = 0$$

$$r\frac{d\theta}{dr} = -1$$

$$tan\emptyset = r.\frac{d\theta}{dr}$$

$$tan \emptyset_2 = -1$$

$$\emptyset_2 = -\frac{\pi}{4}$$

1

1

1

Download by mathswithme.in

2 (b) Find the radius of curvature of the curve x = acost, y = asint. (10)

Solution: Giv

Given
$$x = acost$$
, $y = asint$

WKT, Radius of curvature of the curve is,

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$

Differentiating wrt t, we get

$$\frac{dx}{dt} = -asint \qquad , \qquad \frac{dy}{dt} = acost$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

$$=\frac{acost}{-asint}$$

$$\frac{dy}{dx} = -cott$$

Differentiating again wrt x,we get

$$\frac{d^2y}{dx^2} = -(-cosec^2t)\frac{dt}{dx}$$

$$=cosec^2t.-\frac{1}{asint}$$

$$\frac{d^2y}{dx^2} = \frac{-cosec^3t}{a}$$

Now,
$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$

$$= \frac{\left[1 + (-\cot t)^2\right]^{\frac{3}{2}}}{-\frac{\cos ec^3t}{a}}$$

$$= \frac{\left[1 + \cot^2t\right]^{\frac{3}{2}}}{\frac{\cos ec^3t}{a}}$$

$$= \left(\cos ec^2t\right)^{\frac{3}{2}} \cdot \frac{-a}{\cos ec^3t}$$

$$\rho = -a \text{ i.e } \rho = a$$

2

1

1

1

2

1

SECTION-II

3 (a)	Obtain Maclaurin's series expansion of $\log (1 + x)$ upto x^4	(8)
Solution:		
	$f(x) = \log_e(1+x)$	
	Maclaurin's Series expansion is given by	
	$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \dots$	2
	$f(x) = \log_e(1+x)$ $f(0) = \log_e(1+0) = 0$	1
	$f'(x) = \frac{1}{(1+x)}$ $f'(0) = \frac{1}{(1+0)} = 1$	1
	$f''(x) = \frac{-1}{(1+x)^2} \qquad f''(0) = \frac{-1}{(1+0)^2} = -1$	1
	$f'''(x) = \frac{2}{(1+x)^3} \qquad f'''(0) = \frac{2}{(1+0)^3} = 2$	1
	$f^{IV}(x) = \frac{-6}{(1+x)^4} \qquad f^{IV}(0) = \frac{-6}{(1+0)^4} = -6$	1
	Maclaurin's series expansion is	
	$\log_e(1+x) = x - \frac{x^2}{2!} + 2\frac{x^3}{3!} - 6\frac{x^4}{4!} + \cdots \dots$	1
3 (b)	Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$	(6)
Solution:		
	$(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$	1
	$M = 4xy + 3y^2 - x$, $N = x^2 + 2xy$	1
	$\frac{\partial M}{\partial y} = 4x + 6y \qquad , \frac{\partial N}{\partial x} = 2x + 2y$	
	$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 4x + 6y - 2x - 2y$	
	=2x+4y	1
	$= 2(x + 2y) \Rightarrow \text{Close to N}$ $\text{Now } \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{2(x + 2y)}{x(x + 2y)} = \frac{2}{x} = f(x)$	1
	Integrating Factor = $e^{\int f(x)dx} = e^{\int \frac{2}{x}dx} = e^{2logx} = x^2$	1
	Multiply given equation by x^2 $M = 4x^3y + 3x^2y^2 - x^3 \qquad , \qquad N = x^4 + 2x^3y$	
	$\frac{\partial M}{\partial y} = 4x^3 + 6x^2y \qquad , \qquad \frac{\partial N}{\partial x} = 4x^3 + 6x^2y$	1

	ode: 205C511/SEP1 2023 MAREUP EXAMS APPLIED MATHEMATICS MODEL ANSWERS	,
	$\int Mdx + \int Ndy = C$	
	$\int (4x^3y + 3x^2y^2 - x^3) dx + \int 0. dy = C$	
	y-const x^4	
	$x^4y + x^3y^2 + \frac{x^4}{4} = C$	2
3 (c)	Solve $(D^2 + 5D + 6) = e^x$	(6)
Solution:	Given, $(D^2 + 5D + 6) = e^x$	
	The Auxiliary Equation is,	
	$m^2 + 5m + 6 = 0$	1
	$m^2 + 3m + 2m + 6$	
	m=-3,-2 are the roots which are real and distinct	1
	Complimentary Function,	
	$C.F = c_1 e^{-2x} + c_2 e^{-3x}$ Now,	1
	Particular Integral,	
	$P.I = \frac{1}{f(D)} e^{x}$ $= \frac{1}{D^{2} + 5D + 6} e^{x}$	1
	Put D=1	
	$=\frac{1}{1^2+5.1+6} e^{x}$	
	$P.I = \frac{e^x}{12}$	1
	The Solution is, $y = C.F + P.I$	
	$y = c_1 e^{-2x} + c_2 e^{-3x} + \frac{e^x}{12}$	1
	Download by mathswithme	.in

4 (a)	Expand $sin(e^x-1)$ using Maclaurin's series expansion upto the term containing x^4	(8)
Solution:	Maclaurin's Series expansion is	
	$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f^{IV}(0) + \cdots$	
	$f(x) = f(0) + \frac{1}{1!}f(0) + \frac{1}{2!}f(0) + \frac{1}{3!}f(0) + \frac{1}{4!}f(0) + \cdots$	1
	$f(x) = \sin\left(e^x - 1\right) \qquad \qquad f(0) = 0$	1
	$f'(x) = \cos(e^x - 1) e^x$ $f'(0) = 1$	1
	$f''(x) = \cos(e^x - 1)e^x + e^x[-\sin(e^x - 1)]e^x \qquad f''(0) = 1$	1
	$f''(x) = e^x[\cos(e^x - 1) - e^x\sin(e^x - 1])$	
	$f''(x) = f'(x) - e^{2x}f(x)$	
	$f''(x) = f'(x) - e^{2x}y$	
	$f'''(x) = f''(x) - e^{2x}f'(x) - f(x)e^{2x}.2$	1
	$f'''(0) = 1 - e^{2(0)} \times 1 - 2(0).1$	
	f'''(0) = 0	
	$f^{IV}(x) = f^{II}(x) - e^{2x}f^{II}(x) - f^{I}(x)e^{2x} \cdot 2 - 2ye^{2x} \cdot 2 - 2e^{2x}f^{I}(x)$	
	$f^{IV}(0) = 0 - 1 - 2 - 4(0) \cdot 1 - (2) \cdot 1$	1
	$f^{IV}(0) = -5$	
	∴ Maclaurin's Series expansion is	1
	$f(x) = \sin(e^x - 1) = x + \frac{x^2}{2!} - 5\frac{x^4}{4!} + \cdots$	1
4 (b)	Solve $tany \frac{dy}{dx} + tanx = cosycos^2x$	(6)
Solution:	$tany \frac{dy}{dx} + tanx = cosycos^2x$	
	Dividing both sides by cosy	
	$secy. tany \frac{dy}{dx} + tanxsecy = \cos^2 x$	1
	$put \ secy = t$	1
	$secytany \frac{dy}{dx} = \frac{dt}{dx}$	1
	$\frac{dt}{dx} + tanx. t = \cos^2 x$	
	$P = tanx , Q = \cos^2 x$	
	$I.F = e^{\int Pdx} = e^{\int tanxdx} = e^{\log secx} = secx$	2
	$t.secx = \int \cos^2 x .secxdx + C$	

	secx. secy = sinx + C	1
4 (c)	Solve $\frac{d^2y}{dx^2}$ +y =secx tanx using variation of parameters	(6)
Solution:	Given,	
	$\frac{d^2y}{dx^2} + y = \sec x \tan x$	
	We have,	
	$(D^2 + 1)y = secx \ tanx$	
	A.E is,	
	$m^2 + 1 = 0$	1
	$m=\pm i$	1
	$C.F = c_1 \cos x + c_2 \sin x$	
	$y_1 = cosx$, $y_2 = sinx$	1
	$P.I = -y_1 \int \frac{y_2 X}{W} dx + y_2 \int \frac{y_1 X}{W} dx$ where,	
	X = secx. tanx &	1
	$W = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1$	
	$P.I = -\cos x \int \frac{\sin x. \sec x \tan x}{1} dx + \sin x \int \frac{\cos x. \sec x \tan x}{1} dx$	
	$= -\cos x \int \tan^2 x \ dx + \sin x \int \tan x \ dx$	1
	$= -\cos x \int (\sec^2 x - 1) dx + \sin x \int \tan x \ dx$	
	=-cosx(tanx-x)+sinx.logsecx	
	The solution is,	
	y = C.F + P.I	1
	$y = c_1 \cos x + c_2 \sin x - \cos x (\tan x - x) + \sin x \cdot \log \sec x$	
	Download by mathswithm	ne i

	SECTION-III	
5 (a)	Solve the following system of equation by Gauss_Elimination method :	(10)
Solution:	*Typing errorGive grace marks those who have attempted it.	
5 (b)	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing order of integration.	(10)
Solution:	For the required region x varies from 0 to 1 and y varies from y=x to $y=\sqrt{x}$ i.e $y^2=x$ which is a parabola.	1
	$(0, 1) \xrightarrow{y^2} y^2 = x$ $(1, 0) X$	1
	$y = x , y = \sqrt{x} \Rightarrow y^2 = x$ $x^2 = x$ $x^2 - x = 0$ $x(x - 1) = 0$ $x = 0, x = 1$ $y = 0, y = 1$ The point of intersection of y=x with the parabola $y^2 = x$ is (1,1) $x = y^2, x = y, y = 0, y = 1$	2 1
	$I = \int_{y=0}^{y=1} \int_{x=y^2}^{x=y} xy dx dy$ $I = \int_{y=0}^{y=1} \left[y \frac{x^2}{2} \right]_{y^2}^{y} dy$	
	$I = \int_{y=0}^{y=1} \left[y \cdot \frac{y^2}{2} - y \cdot \frac{(y^2)^2}{2} \right] dy$	1
	$= \frac{1}{2} \int_{y=0}^{y=1} (y^3 - y^5) dy$	1
	$= \frac{1}{2} \left[\frac{y^4}{4} - \frac{y^6}{6} \right]_0^1$	1
	$=\frac{1}{2}\left[\frac{1}{4}-\frac{1}{6}\right]$	
	$=\frac{1}{24}$	2
D	ownload by mathswithme.in	

Solve by Gauss-Jordan Method 6 (a)

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$
 $4x + 3y + 2z = 16$

Solution:

Given,
$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$

$$4x + 3y + 2z = 16$$

The augmented matrix is,

$$[A:B] = \begin{pmatrix} 1 & 2 & 1 & 8 \\ 2 & 3 & 4 & 20 \\ 4 & 3 & 2 & 16 \end{pmatrix}$$

$$R_{2}=R_{2}-2R_{1} , R_{3}=R_{3}-4R_{1}$$

$$[A:B] = \begin{pmatrix} 1 & 2 & 1 & 8 \\ 0 & -1 & 2 & 4 \\ 0 & -5 & -2 & -16 \end{pmatrix}$$

$$R_3 = R_3 - 5R_2$$

$$[A:B] = \begin{pmatrix} 1 & 2 & 1 & 8 \\ 0 & -1 & 2 & 4 \\ 0 & 0 & -12 & -36 \end{pmatrix}$$

$$R_1 = R_1 + 2R_2$$

$$[A:B] = \begin{pmatrix} 1 & 0 & 5 & 16 \\ 0 & -1 & 2 & 4 \\ 0 & 0 & -12 & -36 \end{pmatrix}$$

$$R_3 = R_3 / -12 , R_2 = R_2 x - 1$$

$$[A:B] = \begin{pmatrix} 1 & 0 & 5 & | & 16 \\ 0 & 1 & -2 & | & -4 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

$$R_1 = R_1 - 5R_3$$
 , $R_2 = R_2 + 2R_3$

$$[A:B] = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$
 is an identity matrix

Hence
$$x = 1$$
, $y = 2$, $z = 3$

Download by mathswithme.in

2

(10)

2

2

1

1

1

1

6 (b)	Evaluate $\int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} \int_{z=0}^{z=\sqrt{1-x^2-y^2}} xyz dz dy dx$	(10)
Solution:	$I = \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} \int_{z=0}^{z=\sqrt{1-x^2-y^2}} xyz dzdy dx$	
	$= \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} xy \left[\frac{z^2}{2}\right]_0^{\sqrt{(1-x^2-y^2)}} dy dx$	1
	$= \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} xy \frac{(1-x^2-y^2)}{2} dy dx$	1
	$= \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^2}} (xy - x^3y - xy^3) dy dx$	1 1
	$= \frac{1}{2} \int_{x=0}^{x=1} \left[x \frac{y^2}{2} - x^3 \cdot \frac{y^2}{2} - x \cdot \frac{y^4}{4} \right]_0^{\sqrt{1-x^2}} dx$	
	$= \frac{1}{2} \int_{x=0}^{x=1} \left[x \frac{1-x^2}{2} - x^3 \frac{1-x^2}{2} - \frac{x}{4} (1-x^2)^2 \right] dx$	1
	$= \frac{1}{2} \int_{x=0}^{x=1} \left[\frac{x - x^3}{2} - \frac{x^3 + x^5}{2} - \frac{x}{4} (1 + x^4 - 2x^2) \right] dx$	
	$= \frac{1}{4} \int_{x=0}^{x=1} \left[x - x^3 - x^3 + x^5 - \frac{x + x^5 - 2x^3}{2} \right] dx$	2
	$= \frac{1}{8} \int_{x=0}^{x=1} \left[2x - 4x^3 + 2x^5 - x - x^5 + 2x^3 \right] dx$	1
	$= \frac{1}{8} \int_{x=0}^{x=1} [x - 2x^3 + x^5] dx$	1
	$= \frac{1}{8} \left[\frac{x^2}{2} - \frac{2x^4}{4} + \frac{x^6}{6} \right]_0^1$	
	$=\frac{1}{8}\left[\frac{1}{2} - \frac{1}{2} + \frac{1}{6}\right]$	
	$=\frac{1}{48}$	1
	SECTION-IV	
7 (a)	If $\vec{F} = (x + y + 1)i + j - (x + y)k$ then show that $\vec{F} \cdot curl\vec{F} = 0$	(6)
Solution:	$\vec{F} = (x + y + 1)i + j - (x + y)k$	
	$= f_1 i + f_2 j + f_3 k$	1
Do	wnload by mathswithme.in	

	$curl\vec{F} = \begin{vmatrix} i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ x + y + 1 & 1 & -x - y \end{vmatrix}$	2
	= i[-1 - 0] - j[-1 - 0] + k[0 - 1]	1
	=-i+j-k	1
	\vec{F} . $curl\vec{F} = -x - y - 1 + 1 + x + y$	
	=0	1
7 (b)	Form the PDE by eliminiating arbitrary constants a and b from $z = (x - a)^2 + (y - b)^2$	(6)
Solution:	Given,	
	$z = (x - a)^2 + (y - b)^2$ (1)	
	Differentiating partially wrt x,	
	$\frac{\partial z}{\partial x} = 2(x - a)(1 - 0) + 0$	
	p=2(x-a)	
	$\frac{p}{2} = (x - a)$	2
	Differentiating partially wrt y,	2
	$\frac{\partial z}{\partial y} = 0 + 2(y - b)(1 - 0)$	
	$\frac{\partial z}{\partial y} = 2(y - b)$ $q = 2(y - b)$	
	$\frac{q}{2} = (y - b)$	2
	Substituing in (1)we get,	
	$z = \left(\frac{p}{2}\right)^2 + \left(\frac{q}{2}\right)^2$	1
	$4z = p^2 + q^2$ is the required solution	1
Do	wnload by mathswithme.in	

7 (c)	Solve $p + q = \frac{z}{a}$ by Lagrange's method.	(8)
Solution:	Given, $p + q = \frac{z}{a}$ is of the form $P_p + Q_q = R$	1
	The auxiliary equation is, $\frac{dx}{p} = \frac{dy}{q} = \frac{dx}{R}$	2
	$\frac{dx}{1} = \frac{dy}{1} = \frac{dx}{z/a} \dots \dots$	1
	$\frac{dx}{1} = \frac{dy}{1}$	
	The solution on integrating is, $x = y + c$	
	$x - y = c_1$	1
	Now consider,	
	$\frac{dy}{1} = \frac{dx}{\frac{Z}{a}}$	1
	The solution on integrating is, $y = alogz$	1
	$y - alogz = c_2$	
	The complete solution is, $\emptyset(u, v) = 0$	1
	$\emptyset(x-y,y-alogz)=0$	
8 (a)	Find the directional derivatives of $\phi = xy^2 + yz^3$ at $(2, -1, 1)$ along $i + 2j + 2k$	(7)
Solution:	: $\phi = xy^2 + yz^3$ Grad $\phi = \nabla \phi = \frac{\delta \phi}{\delta x}i + \frac{\delta \phi}{\delta y}j + \frac{\delta \phi}{\delta z}k$ = $y^2i + (2xy + z^3)j + 3yz^2k$	1
	$\nabla \phi_{(2,-1,1)} = (-1)^2 i + [2(2)(-1) + (1)^3]j + 3(-1)(1)^2 k$	
	=i-3j-3k	1

Unit vector normal along the direction $i + 2j + 2k$	
$\hat{n} = \frac{\vec{d}}{ \vec{d} } = \frac{(i+2j+2k)}{\sqrt{1+4+4}} = \frac{i+2j+2k}{3}$	
$n - \frac{1}{ \vec{d} } = \frac{1}{\sqrt{1+4+4}} = \frac{1}{3}$	

1

Required directional derivative = $\nabla \phi \cdot \hat{n}$

2

$$= (i - 3j - 3k) \cdot \frac{(i+2j+2k)}{3}$$
$$= \frac{1}{2}(1 - 6 - 6)$$

2

 $=-\frac{11}{3}$

(6)

Evaluate $\oint \int_C (xy + y^2) dx + x^2 dy$ where is C is the closed curve of the region bounded by y = x and $y = x^2$ using Green's Theorem.

(6)

Solution:

8 (b)

$$\oint_{\mathcal{C}} M dx + \oint_{\mathcal{C}} N dy = \oint (xy + y^2) dx + x^2 dy$$

$$M = xy + y^{2} \qquad N = x^{2}$$

$$\frac{\partial M}{\partial y} = x + 2y \qquad \frac{\partial N}{\partial x} = 2x$$

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 2x - x - 2y$$

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = x - 2y$$

1

1

The curve C bounded by $y = x \& y = x^2$ \therefore By the Green's Theorem W.K.T

1

1

$$\oint_{c} M dx + \oint_{c} N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

$$\Rightarrow I = \int_{x=0}^{1} \int_{y=x^{2}}^{x} (x - 2y) dy dx$$

$$= \int_{x=0}^{1} [xy - y^{2}]_{x^{2}}^{x} dx$$

$$= \int_{x=0}^{1} [(x^{2} - x^{2}) - (x^{3} - x^{4})] dx$$

$$= \int_{0}^{1} (x^{4} - x^{3}) dx$$

$$= \left[\frac{x^{5}}{5} - \frac{x^{4}}{4} \right]_{0}^{1}$$

1

Download by mathswithme.in

1

(7)

1

2

1

1

1

Derive one dimensional heat equation. 8 (c)

Solution:

Consider a homogeneous bar of constantcross-sectional area A.

Let ρ be the density, s be the specific heat and K be the thermal conductivity of the material. Let the sides be insulated so that the stream lines of heat flow are parallel andperpendicular to the area A.

Let one end of the bar be taken as the origin O and the direction of the heat flow be the positive x-axis

Let u = u(x, t) be the temperature of the slab at a distance x from the origin.

Consider an element of bar between the planes PQRS and P'Q'R'S' at adistancex&

 $x+\delta x$ from the end O. Let δu be the change in temperature in

a slab of thickness x of the bar The mass of

the element = $A\rho\delta x$

The quantity of heat stored in this slab element = $A\rho s\delta x\delta u$

Hence the rate of increase of heat in this slab element is

$$R = (A\rho s \delta x)^{\frac{\partial u}{\partial t}} - - - - - > (1)$$

If R_I is the rate of inflow of heat and R_O is the rate of outflow of heat, we have

$$R_I = -KA \frac{\partial u}{\left[\partial x\right]_x} \text{ and }$$

$$R_O = -KA \frac{\partial u}{\left[\partial x\right]_{x+\delta x}} - - - - - - > (2)$$

Where the negative sign is due to empirical law (1)

Hence we have from (1) & (2)

$$R = R_I - R_O$$

$$i \cdot e, A \rho s \delta x \frac{\partial u}{\partial t} = KA \frac{\partial u}{\partial x} - KA \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial t} = \frac{K}{\delta s} = \left\{ \frac{\left[\frac{\partial u}{\partial x}\right]_{x+\partial x} - \left[\frac{\partial u}{\partial x}\right]_{x}}{\partial x} \right\} - \cdots > 3$$

$$\frac{\partial u}{\partial t} = \frac{\kappa}{\delta s} = \left\{ \frac{\left[\frac{\partial u}{\partial x}\right]_{x+\partial x} - \left[\frac{\partial u}{\partial x}\right]_{x}}{\partial x} \right\} - \cdots > 3$$

Taking limit as $\delta x \rightarrow 0$, *RHS is equal to*

$$\frac{K}{\rho s} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{K}{\partial s} \frac{\partial^2 u}{\partial x^2}$$

Further denoting $c^2 = \underline{K}$ which is called the diffusity of the substance, (3) becomes

	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ $u_t = c^2 u_{xx} \text{is the one dimensional heat equation}$	1
	SECTION-V	
9 (a)	Compute the fourth root of 12 correct to 3 decimal places using Regula Falsi method	(10)
Solution:	Let $x = \sqrt[4]{12}$	1
	$x=12^{\frac{1}{4}}$	1
	Taking the power 4 on both sides	
	$x^4 = 12$	1
	$x^4 - 12 = 0$ The function is,	
	$f(x) = x^4 - 12$	
	Now $f(0)=-12$ (-ve) f(1)=1-12=-11 (-ve) f(2)=16-12=4 (+ve)	2
	The root lies between 1 & 2 f(1.5)=-ve, f(1.7)=-ve, f(1.8)=+ve	1
	The root lies between 1.7 & 1.8	1
	Now, $x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$	2
	$=\frac{1.7(10.4976)-1.8(-3.6479)}{10.4976-(-3.6479)}$	1
	$x_2 = 1.861$	
Do	wnload by mathswithme.in	

	Using Lagrange's Interpolation formula, fit a polynomial for following	(10)
9 (b)	Data find y at $x = 4$	
	x 0 1 2 5	
	y 2 3 12 147	
	Given	
Solution:		
	X 0 1 2 5 y 2 3 12 147	
	I among a lating flat and a lating Francisco for a lating	
	Lagrange's Interpolation Formula for above table is $(x-x_1)(x-x_2)(x-x_3)$ $(x-x_0)(x-x_2)(x-x_3)$	3
	$y = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}y_1$	
	$(x-x_0)(x-x_1)(x-x_3)$ $(x-x_0)(x-x_1)(x-x_2)$	
	$+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3$	
	on de genoto de la capación de la capación de capación de genoto de la capación de genoto de la capación de la	
	(1)(1)(5)	
	$y = \frac{(x-1)(x-2)(x-5)}{(0-1)(0-2)(0-5)}(2) + \frac{(x-0)(x-2)(x-5)}{(1-0)(1-2)(1-5)}(3)$	3
		3
	$+\frac{(x-0)(x-1)(x-5)}{(2-0)(2-1)(2-5)}(12)+\frac{(x-0)(x-1)(x-2)}{(5-0)(5-1)(5-2)}(147)$	
	(2 5)(2 2)(6 5)	3
	$y = -\frac{1}{5}[x^3 - 8x^2 + 17x - 10] + \frac{3}{4}[x^3 - 7x^2 + 10x] - 2[x^3 - 6x^2 + 5x] + \frac{147}{60}[x^3 - 3x^2 + 2x]$	
	$y(x) = x^3 + x^2 - x + 3$	
	y(4) = 79	1
10 (-)	$a^{1} dx$ 1.	(10)
10 (a)	Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}$ rule taking 4 equal strips and hence	(10)
	deduce an appropriate value of π .	
Solution:	Civon a=0 $h=1$ $n=4$	
	Given,a=0, b=1, n=4	
	b-a $1-0$	
	$h = \frac{1}{n} = \frac{1}{4}$	1
	$h = \frac{b-a}{n} = \frac{1-0}{4}$ Also given, $y = \int_0^1 \frac{dx}{1+x^2}$	1
	x 0 1/4 1/2 3/4 1	
	y 1 16/17 4/5 16/25 1/2	2
	WKT, Simpson's one-third rule:	
	$\int_{0}^{\infty} y dx = \frac{n}{2} \left[(y_0 + y_0) + 4(y_1 + y_3) + 2(y_2 + y_4) \right]$	2
	J_a 3	_
	$\int_{a}^{b} y dx = \frac{h}{3} \left[(y_0 + y_0) + 4(y_1 + y_3) + 2(y_2 + y_4) \right]$ $= \frac{1/4}{3} \left[(1 + 1/2) + 4(16/17 + 16/25) + 2(4/5) \right]$	1
	$=0.7854$ To deduce the value of π	1
	1 TO GOUGE THE VALUE OF IL	1

	$\int_0^1 \frac{dx}{1+x^2} = tan^{-1}x \ between(0,1)$	1
	$= tan^{-1}1 - tan^{-1}0$	
	$= \frac{\pi}{4} - 0$ $0.7854 = \frac{\pi}{4}$	1
	$0.7854 = \frac{4\pi}{7}$	1
	$\pi = 3.142$	
10 (b)	Apply Runge Kutta fourth order method ,to find an appropriate value of y	(10)
	when x=0.2 given that $\frac{dy}{dx} = x + y$ and y = 1 when x=0	
Solution:	Here $x_0 = 0, y_0 = 1, h = 0.2, f(x_0, y_0) = 1$	
	$k_1 = hf(x_0, y_0)$	2
	$k_2 = hf(x_0 + \frac{1}{2}h, y_0 + \frac{1}{2}k_1) = 0.2 \times f(0.1, 1.1); k_2 = 0.2400$	1
		1
	$k_3 = hf(x_0 + \frac{1}{h}, y_0 + \frac{1}{k_2}) = 0.2 \times f(0.1, 1.12)$	1
	$k_3 = 0.2440$	
	$k_4 = hf(x_0 + h, y_0 + k_3) = 0.2 \times f(0.2, 1.244)$; $k_4 = 0.2888$	1
	$k = \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$	
	$k = \frac{1}{2} (0.2000 + 0.4800 + 0.4880 + 0.2888)$	2
	6	
	$k = \frac{1}{2}(1.4568) = 0.2468$	2
	6	
	Hence the required approximate value of y is $y + k = 1.2428$	1
	"Certified that the model answers prepared by us for code 20SC51T and scheme of valuation are correct to my knowledge".	
	AWARD FULL MARKS FOR ALTERNATE METHODS OF SOLUTIONS.	

Download by mathswithme.in