Register Number

Code: 20SC01T

I/II Semester Diploma Examination, Nov/Dec 2024 ENGINEERING MATHEMATICS

TIME: 3 HOURS

MAX MARKS: 100

- Note: i) Answer any 5 questions from SECTION-A, each question carries 4 marks.
- ii) Answer any 10 questions from SECTION-B, each question carries 5 marks.
- iii) Answer any 5 questions from SECTION-C, each question carries 6 marks.

SECTION - A

- 1. If $A = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 6 \\ 1 & 3 \end{bmatrix}$, find the matrix A + 2B.
- 2. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $A \cdot A^T$.
- 3. If the matrix $A = \begin{pmatrix} x & 1 \\ 3 & 4 \end{pmatrix}$ is singular then find 'x'.
- 4. Find the slope of the line whose angle of inclination is 45° with the positive x-axis.
- 5. Find the slope of the straight line passing through the points (2, 6) and (4, 9).

- 6. Convert 150° into radian and $\frac{3\pi}{2}$ into degree.
- 7. If $y = x^2 + 3 \sin x + e^x + 1$ then find $\frac{dy}{dx}$
- 8. Find the slope of the tangent to the curve $y = x^3 + 1$ at (1, 2)
- 9. Integrate $x^2 + \frac{1}{x} + e^x + 2$ with respect to x.
- 10. Evaluate $\int_{1}^{2} x dx$

SECTION - B

- 11. Verify whether AB = BA for the matrices A = $\begin{bmatrix} 3 & 7 \\ 4 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix}$.
- 12. Find adjoint of the matrix $A = \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$.
- 13. Find characteristic equation of the matrix $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$.
- 14. Find equation of the straight line passing through the point (3,2) and having slope 5.
- 15. Find the equation of the straight line passing through the points (4,2) and (6,4).
- Find the equation of straight line having x-intercept 2 and y-intercept
 3 units respectively

- 17. Show that the two lines 2x + y 4 = 0 and 6x + 3y + 10 = 0 are parallel.
- 18. Find the slope, x-intercept and y-intercept of the line 6x + 5y + 10 = 0
- 19. Find the value of sin 150° + cos 120°.
- 20. Simplify: $\sin(90^{\circ} + \theta) + \cos(180^{\circ} \theta) + \tan(270^{\circ} \theta) + \cot(360^{\circ} \theta)$
- 21. Write the formula of sin(A + B) and hence find the value of $sin 75^{\circ}$
- 22. Prove that sin2A = 2sinA cosA using compound angle formula.
- 23. If $y = x^2 + 3x + 7$, then find $\frac{d^2y}{dx^2}$
- 24. If $y = x \sin x$, then find $\frac{dy}{dx}$
- 25 If $y = \frac{1+x}{1-x}$, find $\frac{dy}{dx}$
- 26. Evaluate $\int (x^2(1+x))dx$.
- 27. Evaluate $\int_0^1 (x^2 + 1) dx$.
- 28. Evaluate $\int x e^x dx$.

SECTION - C

- 29. Solve the equations 3x + 2y = 8 and 4x + 5y = 6 by applying Cramer's rule.
- Identify the singular and non-singular matrices in the following matrices.

$$A = \begin{bmatrix} 1 & 7 \\ 0 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 1 \\ 9 & 3 \end{bmatrix} C = \begin{bmatrix} 7 & 2 \\ 1 & 3 \end{bmatrix}$$

- 1. Find the equation of a line passing through the point (1, 3) and parallel to the line 5x + 2y + 10 = 0.
- 32. Prove that $\sin 3 A = 3 \sin A 4 \sin^3 A$
- 33. Write the compound angle formula for tan(A+B) and hence prove that $tan\left(\frac{\pi}{4} + A\right) = \frac{1 + tanA}{1 tanA}$
- 34. Write product rule and hence find the derivative of $y = x^2 e^x \sin x$
- 35. If y is the distance travelled in meters by a particle in time x sec is given $x^3 + 5x^2 + 3x 12$. Find the velocity and acceleration when x = 1 sec.
- 36. Find equation of tangent to the curve $y = x^2 + x$ at the point (1,2).
- 37. Find the area under the curve y = 2x + 1 with x-axis and ordinates x = 0 & x = 2
- 38. Find the volume of solid generated by revolving the curve $y^2 = 3x^2 1$ about the axis between x = 1 and x = 3.