# www.mathswithme.in



Code: 15SC02M

| Register<br>Number                    | 100 | 0 | (0) | 3 | 0 | 0 | () | G |
|---------------------------------------|-----|---|-----|---|---|---|----|---|
| · · · · · · · · · · · · · · · · · · · |     |   |     |   | _ |   |    |   |

# II Semester Diploma Examination, Oct./Nov.-2019

# **ENGINEERING MATHEMATICS-II**

Time: 3 Hours]

[ Max. Marks : 100

- Note: (i) Answer any 10 sub-division in Section-A, each sub-division carries 3 marks.
  - (ii) Answer any 8 sub-division in section-B, each sub-division carries 5 marks.
  - (iii) Answer any 5 sub-division in Section-C, each sub-division carries 6 marks.

## SECTION - A

(Answer any 10)

- 1. (a) Find the equation of the line passing through the point (2, -3) with slope 3.1 + 1 + 1
  - (b) Find the equation of parabola with focus at (2, 0) and X-axis is the axis of the parabola. 1+1+1
- 2. (a) Differentiate  $15x^4 + 3e^{2x}$  w.r.t. x.

 $1\frac{1}{2} + 1\frac{1}{2}$ 

(b) If  $y = x \log x$ , find  $\frac{dy}{dx}$ .

1+1+1

(c) If  $y = \sin h 2x$ , find  $\frac{d^2y}{dx^2}$ .

 $1\frac{1}{2} + 1\frac{1}{2}$ 

3. (a) If x = at,  $y = t^2$  find  $\frac{dy}{dx}$ .

1+1+1

(b) Find the slope of tangent to the curve  $y = x^2 - 3x + 4$  at (2, 2)

1 + 1 + 1

- (c) The equation of motion of the particle is  $S = t^3 + 5t^2 + 4$  in motor. Find the velocity when t = 2 seconds. 1 + 2
- 4. (a) Integrate w.r.t. x,  $x + \sin x$ .

11/2 + 11/2

(b) Integrate  $\cot^2 x$  w.r.t. x.

1 + 2

(c) Integrate  $\sin 2x \cos 4x$  w.r.t. x.

1 + 2

1 of 4

Turn over

5. (a) Evaluate  $\int_{0}^{1} (3x+2) dx$ .

2 + 1

(b) Evaluate  $\int_{0}^{1} e^{2x} dx$ 

1+1+1

(c) Find the order & degree of differential equation

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)^3 = \left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^{2/3}$$

1+2

### **SECTION - B**

(Answer any 8)

- 6. (a) Find the equation of line passing through the point (3, 4) and parallel to the line 3x + 4y = 8. 2 + 2 + 1
  - (b) Differentiate  $\sin x$  w.r.t. 'x' by first principle.

1 + 2 + 2

7. (a) If  $y = x^{\sin x}$  find  $\frac{dy}{dx}$ .

1 + 3 + 1

(b) Find  $\frac{dy}{dx}$  if  $y = \frac{3\sin x - 2\cos x}{x}$ .

- 1 + 3 + 1
- (c) The volume of sphere is increasing at the rate of 36  $\pi$  cc/s. Find the rate of increase of radius, when the radius is 2 cm. 2+1+2
- 8. (a) Evaluate  $\int \frac{1}{1 + \sin x} dx$ .

1 + 2 + 2

(b) Evaluate  $\int \frac{e^{3 \sin^{-1} x}}{\sqrt{1 - x^2}} . dx$ 

3+2

(c) Evaluate  $\int x \log x \, dx$ 

1+2+2

- 9. (a) Evaluate  $\int_{0}^{5} \frac{1}{25 + x^2} dx$ . 2 + 2 + 1
  - (b) Find the area bounded by the curve  $y = 3x^2 x$ , the X axis & the ordinates x = 0, x = 2.
  - (c) Form the differential equations by eliminating arbitrary constants a & b from the equation  $y = a \cos m x + b \sin m x$ . 2 + 2 + 1

#### **SECTION - C**

### (Answer any 5)

- 10. (a) Find the equation to the line passing through (3, -2) and perpendicular to the line joining points (5, 2) & (7, -6).
  - (b) Find the equation of hyperbola in the form  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  whose eccentricity is 8 & distance between foci is 12. 1 + 2 + 2 + 1
- 11. (a) If  $x = a \cos^3 \theta$ ,  $y = a \sin^3 \theta$ , find  $\frac{dy}{dx}$  as  $\theta = \frac{\pi}{4}$ .
  - (b) If  $y = e^{\tan^{-1}(x)}$ , then prove that  $(1 + x^2) y_2 + (2x 1) y_1 = 0$ . 2 + 2 + 2
  - (c) Evaluate  $\int \tan^{-1}(x) dx$ . **2+3+1**
- 12. (a) Evaluate  $\int_{0}^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx$  2+2+2

  - (c) Find the maximum & minimum values of the function 1+3+2 $x^3-12x^2-27x+16$