ENGINEERING MATHEMATICS-20SC01T

UNIT : 1 - MATRICES AND DETERMINANTS

Matrices

Matrix: A matrix is a rectangular arrangement of a numbers in a rows and columns with in a closed brackets called as matrix.

Matrices is a plural form of matrix.

Eg: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

www.mathswithme.in

If number of rows and columns are represented by m and n then order of a matrix can be defined as $m \times n$

Types of matrices:

Order of a matrix:

- 1. <u>Square matrix</u>: A matrix in which the number of rows is equal to the number of columns , is called a square matrix .e.g.: $\begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$
- 2. <u>Row matrix</u>: A matrix in which it having only one row but many number of columns is called row matrix .e.g.: [5 4]
- 3. <u>Column matrix</u>: A matrix having only one column but many number of rows is called column matrix e.g.: $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$
- 4. <u>Diagonal matrix</u>: It's a square matrix in which the non principal diagonal elements are equal to zero .e.g.: $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$
- 5. <u>Scalar matrix</u>: It's a diagonal matrix in which the principal diagonal elements are same other than 1. e.g.: $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
- 6. <u>Identity (unit) matrix</u>: It's a scalar matrix in which the principal diagonal elements are equal to 1. .e.g.: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 7. <u>Null matrix</u>: A matrix in which all the elements are zero is called as null (zero) matrix .e.g.: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

8. <u>Symmetric matrix</u>: A square matrix is said to be symmetric if it remains same when rows are changed into columns or columns are

changed into rows .e.g.:
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$
 $A^{1} = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$

- 9. Equal matrix : If two matrices are said to be equal
 - i) They have the same order and
 - ii) Corresponding elements are equal

Eg:
$$\begin{bmatrix} x & y \\ w & z \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 2 & 4 \end{bmatrix}$$
 if x=5, y=3, w=2, z=4

<u>Algebra of matrices:</u>

Transpose of a matrices:

The matrix obtained by interchanging rows into columns or columns into rows is called transpose of a matrix and it is represented by $A^1(or)A^T$.

e.g.:
$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}_{1 \times 2} A^T = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{2 \times 1}$$

Addition of matrices

If *A* and *B* are two matrices of same order $m \times n$ then their sum A + B is also a matrix of order $m \times n$ and is obtained by adding corresponding elements of *A* and *B*.

Examples: (1) If
$$X = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 and $Y = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $X + Y = \begin{bmatrix} w + a & x + b \\ y + c & z + d \end{bmatrix}$
(2) If $A = \begin{bmatrix} 5 & 3 \\ 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 0 & 1 \\ 1 & 5 \end{bmatrix}$ then $A + B = \begin{bmatrix} 5 + 3 & 3 + 4 \\ 1 + 0 & 2 + 1 \\ 2 + 1 & 4 + 5 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 1 & 3 \\ 3 & 9 \end{bmatrix}$

www.mathswithme.in

Subtraction of matrices

If *A* and *B* are two matrices of same order $m \times n$ then their difference A - B is also a matrix of order $m \times n$ and is obtained by subtracting elements of B from corresponding elements of A.

Examples: (1) If
$$X = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 and $Y = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $X - Y = \begin{bmatrix} w - a & x - b \\ y - c & z - d \end{bmatrix}$
(2) If $A = \begin{bmatrix} 5 & 3 \\ 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 0 & 2 \\ 5 & 1 \end{bmatrix}$ then $A - B = \begin{bmatrix} 5 - 3 & 3 - 4 \\ 1 - 0 & 2 - 2 \\ 2 - 5 & 4 - 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 3 \end{bmatrix}$

Scalar Multiplication of a matrix

If A is a matrix and k is a scalar then the scalar multiplication kA is a matrix obtained by multiplying each elements of A by scalar k.

Examples: (1) If
$$A = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 then $kA = \begin{bmatrix} kw & kx \\ ky & kz \end{bmatrix}$
(2) If $B = \begin{bmatrix} 4 & 1 & 0 \\ -1 & 2 & 3 \end{bmatrix}$ then $2B = \begin{bmatrix} 8 & 2 & 0 \\ -2 & 4 & 6 \end{bmatrix}$

PROBLEMS

Example 1: If $A = \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$ then find 4A. $A = \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$ Given Solution: $4A = 4 \begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$ \Rightarrow $4A = \begin{bmatrix} 4 \times 1 & 4 \times 3 \\ 4 \times 4 & 4 \times (-2) \end{bmatrix}$ \Rightarrow $4A = \begin{bmatrix} 4 & 12 \\ 16 & -8 \end{bmatrix}$ \Rightarrow www.mathswithm Example 2: If $B = \begin{bmatrix} 1 & 0 & -3 \\ 3 & 2 & 4 \end{bmatrix}$ then find 2B. Matrices and Determinants-1.4 Page 3

Solution: Given $B = \begin{bmatrix} 1 & 0 & -3 \\ 3 & 2 & 4 \end{bmatrix}$ $\Rightarrow \qquad 2B = 2 \begin{bmatrix} 1 & 0 & -3 \\ 3 & 2 & 4 \end{bmatrix}$ $\Rightarrow \qquad 2B = \begin{bmatrix} 2 & 0 & -6 \\ 6 & 4 & 8 \end{bmatrix}$

Example 3: If $X = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & 0 \\ 4 & 7 \end{bmatrix}$ then find X + Y.

Solution: Given $X = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & 0 \\ 4 & 7 \end{bmatrix}$ Consider $X + Y = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 4 & 7 \end{bmatrix}$ $\Rightarrow \qquad X + Y = \begin{bmatrix} 3+2 & 1+0 \\ 2+4 & 5+7 \end{bmatrix}$ $\Rightarrow \qquad X + Y = \begin{bmatrix} 5 & 1 \\ 6 & 12 \end{bmatrix}$

Example 4: If $A = \begin{bmatrix} 1 & 2 & 6 \\ 5 & 3 & 7 \\ 0 & -1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 & 1 \\ 7 & 5 & -1 \\ 2 & 6 & 4 \end{bmatrix}$ then find A + B.

Solution: Given $A = \begin{bmatrix} 1 & 2 & 6 \\ 5 & 3 & 7 \\ 0 & -1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 & 1 \\ 7 & 5 & -1 \\ 2 & 6 & 4 \end{bmatrix}$ Consider $A + B = \begin{bmatrix} 1 & 2 & 6 \\ 5 & 3 & 7 \\ 0 & -1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 1 \\ 7 & 5 & -1 \\ 2 & 6 & 4 \end{bmatrix}$ $\Rightarrow \qquad A + B = \begin{bmatrix} 1+0 & 2+2 & 6+1 \\ 5+7 & 3+5 & 7+(-1) \\ 0+2 & (-1)+6 & 4+4 \end{bmatrix}$ $\Rightarrow \qquad A + B = \begin{bmatrix} 1 & 4 & 7 \\ 12 & 8 & 6 \\ 2 & 5 & 8 \end{bmatrix}$

Example 5: If
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & -1 \\ 2 & 0 \\ 1 & 4 \end{bmatrix}$ then find $3B - 2A$.
Solution: Given $A = \begin{bmatrix} 2 & 1 \\ 6 & 2 \\ 4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -1 \\ 2 & 0 \\ 1 & 4 \end{bmatrix}$
Consider $3B - 2A = 3\begin{bmatrix} 5 & -1 \\ 2 & 0 \\ 1 & 4 \end{bmatrix} - 2\begin{bmatrix} 2 & 1 \\ 6 & 2 \\ 4 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 15 & -3 \\ 6 & 0 \\ 3 & 12 \end{bmatrix} - \begin{bmatrix} 4 & 2 \\ 12 & 4 \\ 8 & 6 \end{bmatrix}$
 $= \begin{bmatrix} 15 - 4 & -3 - 2 \\ 6 - 12 & 0 - 4 \\ 3 - 8 & 12 - 6 \end{bmatrix}$
 $3B - 2A = \begin{bmatrix} 11 & -5 \\ -6 & -4 \\ -5 & 6 \end{bmatrix}$
Example 6: If $\begin{bmatrix} 1 & 2 \\ 4 & x \end{bmatrix} + \begin{bmatrix} y & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 6 & 5 \end{bmatrix}$ then find values of x and y.
Solution: Given $\begin{bmatrix} 1 & 2 \\ 4 & x \end{bmatrix} + \begin{bmatrix} y & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 6 & 5 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} 1+y & 2+3 \\ 4+2 & x+5 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ 6 & 5 \end{bmatrix}$
Two matrices are said to be equal if they are of same order and their corresponding elements are equal.

$$x + y = 7 \quad \text{And} \quad x + 5 = 5$$

$$\Rightarrow \quad y = 7 - 1 \text{ And} \quad x = 5 - 5$$

$$\Rightarrow \quad y = 6 \quad \text{And} \quad x = 0$$

Example 7: If
$$A + B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 1 & 5 \\ 4 & -6 \end{bmatrix}$ then find A.

Solution: Given $A + B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$ www.mathswithme.in and $A - B = \begin{bmatrix} 1 & 5 \\ 4 & -6 \end{bmatrix}$ --- (2)

Adding (1) and (2), we get

$$(A+B) + (A-B) = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 4 & -6 \end{bmatrix}$$

$$\Rightarrow \qquad A+B+A-B = \begin{bmatrix} 2+1 & -1+5 \\ 3+4 & 4-6 \end{bmatrix}$$

$$\Rightarrow \qquad 2A = \begin{bmatrix} 3 & 4 \\ 7 & -2 \end{bmatrix}$$

$$\Rightarrow \qquad A = \frac{1}{2} \begin{bmatrix} 3 & 4 \\ 7 & -2 \end{bmatrix}$$

$$\Rightarrow \qquad A = \begin{bmatrix} 3/2 & 2 \\ 7/2 & -1 \end{bmatrix}$$

ASSIGNMENT PROBLEMS

1. If
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$$
 then find 3*A*.
2. If $B = \begin{bmatrix} 3 & 0 & 2 \\ -1 & 4 & 5 \end{bmatrix}$ then find 2*B*.
3. If $A = \begin{bmatrix} 3 & 6 \\ 15 & 9 \\ 12 & 3 \end{bmatrix}$ then find $\frac{1}{3}A$.
4. Find 2*X* given that $X = \begin{bmatrix} 1 & 0 & 3 \\ -2 & 5 & 7 \\ 1 & 6 & 4 \end{bmatrix}$.
5. If $X = \begin{bmatrix} 3 & 5 & -1 \\ 6 & 2 & 4 \\ 1 & 7 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & 3 & 1 \\ 4 & -1 & 0 \\ 7 & 5 & 1 \end{bmatrix}$ then find $X + Y$.

- 6. If $A = \begin{bmatrix} 3 & -2 & 1 \\ 4 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & 3 \\ 5 & 3 & 6 \end{bmatrix}$ then find 2A + B.
- 7. If $A = \begin{bmatrix} 3 & 4 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 \\ 3 & 0 \end{bmatrix}$ then find 3A B.
- 8. If $A = \begin{bmatrix} 1 & 5 \\ 7 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$ then verify that A + B = B + A.
- 9. If $\begin{bmatrix} x & 2 \\ 3 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ -1 & y \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 2 & 7 \end{bmatrix}$ then find the values of x and y.

10. If
$$A + B = \begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}$ then find matrix A and B

Multiplication of matrices:

If matrix A of order $m \times n$ and matrix B of order $n \times p$ then AB is defined as the matrix of order $m \times p$ it is obtained by multiplying by elements of 1st row of matrix A by corresponding elements of 1st column of matrix B and adding there products .

To perform **multiplication of two matrices**, we should make sure that the number of columns in the 1st matrix is equal to the rows in the 2nd matrix. Therefore, the resulting matrix product will have a number of rows of the 1st matrix and a number of columns of the 2nd matrix. The order of the resulting matrix is the **matrix multiplication order**.

E.g. let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} B = \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix}$$
 WWW.mathswithme.in
Then $AB = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}$

Problems

1. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ then find the product of two matrices. Soln: $AB = \begin{bmatrix} 1 \times 2 + 2 \times 3 & 1 \times 1 + 2 \times 4 \\ 3 \times 2 + 4 \times 3 & 3 \times 1 + 4 \times 4 \end{bmatrix}$ $AB = \begin{bmatrix} 2 + 6 & 1 + 8 \\ 6 + 12 & 3 + 16 \end{bmatrix}$ $AB = \begin{bmatrix} 8 & 9 \\ 18 & 19 \end{bmatrix}$ order of AB is 2×2 2.

DETERMINANT

Definition:

A determinant is a real number associated with every square matrix.

The determinant of a square matrix A is denoted by "det A" or | A |.

Example: If $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, then det $A = |A| = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix}$

Expansion of Determinant of a 2×2 Matrix:

IF A =
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then det A = |A| = $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$
|A| = ad - bc
Example: 1) Let A $\begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$ then $|A| = \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix}$
= (1) (8) - (2) (3)
= 8 - 6
|A| = 2.
2) Let B = $\begin{bmatrix} 3 & 5 \\ 1 & -4 \end{bmatrix}$ then $|B| = \begin{vmatrix} 3 & 5 \\ 1 & -4 \end{vmatrix}$
= (3) (-4) - (1) (5)
= -12-5
|B| = -17

Expansion of Determinant of a 3×3 Matrix

Let C =
$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

Then, $|C| = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$

Note: Sign rule for expansion of order 3 determinant

 $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$

Example:

Let
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 8 & 1 \\ 3 & 0 & 2 \end{bmatrix}$$
 then $|A| = \begin{vmatrix} 2 & 3 & 4 \\ 5 & 8 & 1 \\ 3 & 0 & 2 \end{vmatrix}$
Value of $|A| = 2\begin{vmatrix} 8 & 1 \\ 0 & 2 \end{vmatrix} - 3 \begin{vmatrix} 5 & 1 \\ 3 & 2 \end{vmatrix} + 4\begin{vmatrix} 5 & 8 \\ 3 & 0 \end{vmatrix}$
 $= 2(16 - 0) - 3(10 - 3) + 4(0 - 24)$
 $= 2(16) - 3(7) + 4(-24)$

$$= 32 - 21 - 96$$

|A| = -85

SINGULAR AND NON-SINGULAR MATRIX

Definition

A square matrix B is said to be singular if its determinant value is zero, i.e. |B| = 0, otherwise non -singular.

Example: 1) Let
$$B = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
 then
 $|B| = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix}$
 $= (1) (6) - (2) (3)$
 $= 6 - 6 = 0$
 $|B| = Zero$ Therefore B is singular.
2) Let $A = \begin{bmatrix} 10 & 20 \\ 2 & 4 \end{bmatrix}$ then
 $|A| = \begin{vmatrix} 10 & 20 \\ 2 & 4 \end{vmatrix}$
 $= (10) (4) - (2) (20)$
 $= 40 - 40$
 $|A| = 0$, therefore A is singular.

3) Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 then
 $|A| = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $= 2(0 - 0) - 0(0 - 0) + 0(0 - 5)$
 $|A| = 0$ Therefore A is singular.

SOLVED PROBLEMS

I. Check whether the following matrices are singular:

1)
$$A = \begin{bmatrix} 5 & 25 \\ 1 & 5 \end{bmatrix}$$

Soln: $|A| = \begin{vmatrix} 5 & 25 \\ 1 & 5 \end{vmatrix}$
 $= (5) (5) - (1) (25)$
 $= 25 - 25$
 $|A| = 0$ therefore A is singular matrix.

 $2) \quad A = \begin{bmatrix} 2 & 5 \\ 1 & 5 \end{bmatrix}$ **Soln:** $|A| = \begin{vmatrix} 2 & 5 \\ 1 & 5 \end{vmatrix}$ www.mathswithme.in = (2) (5) - (1) (5)= 10 - 5 $|\mathbf{A}| = 5 \neq 0$ Therefore A is non-singular matrix. 3) $A = \begin{bmatrix} 4 & 12 \\ 2 & 6 \end{bmatrix}$ **Soln:** $|A| = \begin{vmatrix} 4 & 12 \\ 2 & 6 \end{vmatrix}$ = (4) (6) - (12) (2)= 24 - 24**|A| = 0 therefore** A is singular matrix. **4)** $A = \begin{bmatrix} 3 & 1 & 2 \\ 6 & 2 & 4 \\ 7 & 5 & 6 \end{bmatrix}$ **Soln:** $|\mathbf{A}| = \begin{vmatrix} 3 & 1 & 2 \\ 6 & 2 & 4 \\ 7 & 5 & 6 \end{vmatrix}$ = 3(12-20)-1(36-28) + 2(30-14)= 3(-8)-1(8) + 2(16)= -24-8+32 = -32+32 $|\mathbf{A}| = 0$ therefore A is singular matrix.

II Find the value of *x*

5) If
$$\begin{vmatrix} 1 & 5 & 7 \\ 2 & x & 14 \\ 3 & 1 & 2 \end{vmatrix} = 0$$

Soln: Given that $\begin{vmatrix} 1 & 5 & 7 \\ 2 & x & 14 \\ 3 & 1 & 2 \end{vmatrix} = 0$
Expanding the determinant, we get,
 $1 (2x - 14) - 5 (4 - 42) + 7 (2 - 3x) = 0$
 $2x - 14 - 5 (-38) + 14 - 21 x = 0$
 $2x - 14 + 190 + 14 - 21 x = 0$
 $-19 x + 190 = 0$
 $19 x = 190$
 $x = \frac{190}{19}$
 $x = 10$

6) If A = $\begin{bmatrix} 1 & 2 & 3 \\ x & 4 & 1 \\ 3 & 6 & 5 \end{bmatrix}$ is Singular Matrix

Soln: Given A is singular i.e. |A| = 0

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 3 \\ x & 4 & 1 \\ 3 & 6 & 5 \end{vmatrix} = 0$$

Expanding the determinant, we get,

$$1 (20 - 6) - 2 (5 x - 3) + 3(6 x - 12) = 0$$

$$1(14) -2 (5 x - 3) + 3(6 x - 12) = 0$$

$$14 - 10 x + 6 + 18 x - 36 = 0$$

$$-16 + 8 x = 0$$

$$8 x = 16$$

$$x = \frac{16}{8}$$

$$x = 2$$

I) EVALUATE THE FOLLOWING

1)	$ ^{1}_{3}$	2 6		(2)	3 1	$\binom{-2}{-1}$	(3)	1 3 2	2 2 3	3 1 1
(4)	1 2 3	-1 0 2	2 1 1	(5) $\begin{vmatrix} 1\\3\\2 \end{vmatrix}$	1 2 3	1 1 1				

(II) FIND THE VALUE OF 'x' IN THE FOLLOWING

1)
$$\begin{vmatrix} x & -1 \\ 2 & 1 \end{vmatrix} = 0$$
 (2) $\begin{vmatrix} x & 8 \\ 8 & x \end{vmatrix} = 0$
(3) $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & x \\ 7 & 8 & 9 \end{vmatrix} = 0$ (4) $\begin{vmatrix} 1 & 2 & 9 \\ 2 & x & 0 \\ 3 & 7 & -6 \end{vmatrix} = 0$
(5) $\begin{vmatrix} 2 & x - 1 & -3 \\ 1 & -2 & 4 \\ 3 & -1 & 5 \end{vmatrix} = 3x-1.$

1.5: CRAMER'S RULE-TWO VARIABLES SOLUTION OF SYSTEM OF TWO SIMULTANEOUS LINEAR EQUATIONS BY CRAMER'S RULE (DETERMINANT METHOD)

Consider the system of equations:

$$a_1 x + b_1 y = c_1 \quad \text{and} \quad a_2 x + b_2 y = c_2$$
$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \quad \text{(det of coefficient)}$$
$$\Delta_1 = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \quad \text{(det obtained by replacing 1st column f } \Delta \text{ by}$$

constants*c*₁, *c*₂)

$$\Delta_2 = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 \qquad (\text{det obtained by replacing } 2^{\text{nd}} \text{ column of } \Delta \text{ by}$$

constants*c*₁, *c*₂)

Therefore,
$$x = \frac{\Delta_1}{\Delta}$$
 and $y = \frac{\Delta_2}{\Delta}$. Provaided ($\Delta \neq 0$)

Cramer's Rule can also be used to solve the simultaneous equations of 'n' variables

Example

Solve 2x + 3y = 1; 3x - y = -2 by Cramer's rule.

Soln:
$$\Delta = \begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = (2)(-1) - (3)(3) = -2 - 9 = -11$$

 $\Delta_1 = \begin{vmatrix} 1 & 3 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (-2)(3) = 1 + 6 = 5$
 $\Delta_2 = \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} = (2)(-2) - (1)(3) = -4 - 3 = -7$
Therefore, $x = \frac{\Delta_1}{\Delta} = \frac{5}{-11}$ and $y = \frac{\Delta_2}{\Delta} = \frac{-7}{-11} = \frac{7}{11}$

Worked Examples on Cramer's Rule

1) Solve the equations 2x + y = 1; 3x + 2y = 1 by method of determinants.

Type equation here.

Soln: Given system of equation is 2x + y = 1

3x + 2y = 1

$$let \Delta = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 3 - 2 = 1;$$

$$\Delta_1 = \begin{vmatrix} 3 & 1 \\ 8 & 3 \end{vmatrix} = 9 - 8 = 1 \quad and$$

$$\Delta_2 = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 8 - 6 = 2$$

$$now \ x = \frac{\Delta_1}{\Delta} = \frac{1}{1} = 1 \ and \ y = \frac{\Delta_2}{\Delta} = \frac{2}{1} = 2$$

$$\therefore \ x = 1 \ and \ y = -1$$

3) Solve 2x - 3y = 5, 7x - y = 8 by Cramer's rule.

Soln: Given system of the equations is 2x - 3y = 5

$$7x - y = 8$$

let
$$\Delta = \begin{vmatrix} 2 & -3 \\ 7 & -1 \end{vmatrix} = -2 + 21 = 19$$

 $\Delta_1 = \begin{vmatrix} 5 & -3 \\ 8 & -1 \end{vmatrix} = -5 + 2 = 19$
 $\Delta_2 = \begin{vmatrix} 2 & 5 \\ 7 & 8 \end{vmatrix} = 16 - 35 = -19$

now
$$x = \frac{\Delta_1}{\Delta} = \frac{19}{19} = 1$$
 and $y = \frac{\Delta_2}{\Delta} = \frac{-19}{19} = -1$

 $\therefore x = 1$ and y = -1

4) Solve 3u + 4v = 10; 2u - 3v = 1 by Cramer's rule

Soln: Given system of equation is 3u + 4v = 10

2u - 3v = 1let $\Delta = \begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix} = -9 - 8 = -17;$ $\Delta_1 = \begin{vmatrix} 10 & 4 \\ 1 & -3 \end{vmatrix} = -30 - 4 = -34$ $\Delta_2 = \begin{vmatrix} 3 & 10 \\ 2 & 1 \end{vmatrix} = 3 - 20 = -17$ now $u = \frac{\Delta_1}{\Delta} = \frac{-34}{-17} = 2$ and $u = \frac{\Delta_2}{\Delta} = \frac{-17}{-17} = 1$ $\therefore u = 2$ and v = 1

Applications of Cramer's rule to mesh analysis

The following is an example to demonstrate the application of crammer's rule to solve mesh current analysis problems;

Mesh Current Analysis Circuit

One simple method of reducing the amount

of maths involved is to

Analyse the circuit using Kirchhoff's Current Law equations to determine the currents, I₁ and I₂ flowing in the two resistors. Then there is no need to calculate the current I₃ as it is just the sum of I₁ and I₂. So Kirchhoff's second voltage law simply becomes:

- Equation No 1 : $10 = 50I_1 + 40I_2$
- Equation No 2 : $20 = 40I_1 + 60I_2$

The above equations can be solved using crammer's rule, resulting in detection of I_1 and I_2 .

EXERCISE

www.mathswithme.in

Solve by Cramer's Rule:

1) 3x+y=4, x+3y=4

- (2) 2x 3y = 5, 7x y = 8
- (3) 5x+3y=1, 3x+5y=-9
- (4) Y=4, x+3y=4
- (5) 3x + 4y 7 = 0, 7x y 6 = 0
- (6) R_1 + $4R_2$ =70, $2R_2$ - $3R_1$ = 0

1.6 : CRAMER'S RULE-THREE VARIABLES

SOLUTION OF SYSTEM OF THREE SIMULTANEOUS LINEAR EQUATIONS BY CRAMER'S RULE (DETERMINANT METHOD)

Consider the equations

 $a_1x + b_1y + c_1z = \mathbf{d}_1$

 $a_2x + b_2y + c_2z = d_2$

 $a_3x + b_3y + c_3z = d_3$,

In three variables x, y and z.

 $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \quad (\text{det of coefficient})$ $\Delta_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} \quad (\text{det obtained by replacing 1st column of } \Delta \text{ by constants})$ $\Delta_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix} \quad (\text{det obtained by replacing 2nd column of } \Delta \text{ by constants})$ $\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix} \quad (\text{det obtained by replacing 3rd column of } \Delta \text{ by constants})$

Therefore, $x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$ and $z = \frac{\Delta_z}{\Delta}$ provided $\Delta \neq 0$

Example:

Solve using cramer's rule: 5x - 2y - 3z = 17, 3x - y + z = 15 and x + y - 6z = -13

Solution: Given system Equation of

$$5x - 2y - 3z = 17$$

 $3x - y + z = 15$
 $x + y - 6z = -13$

then

$$\Delta = \begin{vmatrix} 5 & -2 & -3 \\ 3 & -1 & 1 \\ 1 & 1 & -6 \end{vmatrix}$$

=5(6-1)+2(-18-1) - 3(3+1) = 25 - 38 - 12 = -25.

$$\Delta_1 = \begin{vmatrix} 17 & -2 & -3 \\ 15 & -1 & 1 \\ -13 & 1 & -6 \end{vmatrix}$$

= 17(6-1)+2(-90+13) - 3(15-13) = 85 - 154 - 6 = -75.

$$\Delta_2 = \begin{vmatrix} 5 & 17 & -3 \\ 3 & 15 & 1 \\ 1 & -13 & -6 \end{vmatrix}$$

= 5(-90+13) - 17(-18 - 1) - 3(-39 - 15)
= -385+323+162=100.

www.mathswithme.in

$$\Delta_{3} = \begin{vmatrix} 5 & -2 & 17 \\ 3 & -1 & 15 \\ 1 & 1 & -13 \end{vmatrix}$$

= 5(13 - 15) + 2(-39 - 15) + 17(3+1)
= -10 - 108 + 68 = -50.
$$x = \frac{\Delta_{x}}{\Delta} = \frac{-75}{-25} = 3, \qquad y = \frac{\Delta_{y}}{\Delta} = \frac{100}{-25} = -4, \qquad z = \frac{\Delta_{z}}{\Delta} = \frac{-50}{-25} = 2.$$

Therefore, x=3, y=-4 and z=2

Problems on 3 linear equations using cramer's rule:

1) solve the following equation using Cramer's rule

Solution : Given system of equation is

$$x + y + z = 7$$

2x +3y +2z = 17
4x +9y + z = 37

Let
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 4 & 9 & 1 \end{vmatrix} = 1 (3-18)-1 (2-8)+1 (18-12) = -15+6+6 = -3$$

 $\Delta_{1=} \begin{vmatrix} 7 & 1 & 1 \\ 17 & 3 & 2 \\ 37 & 9 & 1 \end{vmatrix} = 7(3-18)-1(17-74)+1(153-111)$
 $= -105+57+42 = -6$

$$\Delta_{2=} \begin{vmatrix} 1 & 7 & 1 \\ 2 & 17 & 2 \\ 4 & 37 & 1 \end{vmatrix} 1(17-74)-7(2-8)+1(74-68) = -57+42+6 = -9$$

$$\Delta_{3=} \begin{vmatrix} 1 & 1 & 7 \\ 2 & 3 & 17 \\ 4 & 9 & 37 \end{vmatrix} = 1(111-153)-1(74-68)+7(18-12)$$

$$= -42-6+42 = -6$$

$$now \ x = \frac{\Delta_1}{\Delta} = \frac{-6}{-3} = 2 \ ; \ y = \frac{\Delta_2}{\Delta} = \frac{-9}{-3} = 3 \ and \ z = \frac{\Delta_3}{\Delta} = \frac{-6}{-3} = 2$$

$$\therefore \ x = 2, \ y = 3, \ z = 2$$

2) solve the following equation by Cramer's rule

2x + y - z = 3; x + y + z = 1; x - 2y - 3z = 4

Solution :Given system of equation is 2x + y - z = 3;

$$\begin{aligned} x + y + z &= 1 \\ x - 2y - 3z &= 4 \end{aligned}$$

Let $\Delta = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -2 & -3 \end{vmatrix} = 2(-3+2)-1(-3-1)-1(-2-1)=-2+4+3 = 5$
 $\Delta_1 = \begin{vmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & -2 & -3 \end{vmatrix} = 3(-3+2)-1(-3-4)-1(-2-4)=-3+7+6=10$
 $\Delta_2 = \begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 1 & 4 & -3 \end{vmatrix} = 2(-3-4)-3(-3-1)-1(4-1)=-14+12-3=-5$

$$\Delta_3 = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 1 & 1 \\ 1 & -2 & 4 \end{vmatrix} = 2(4+2) \cdot 1(4-1) + 3(-2-1) = 12 \cdot 3 \cdot 9 = 0$$

$$now \ x = \frac{\Delta_1}{\Delta} = \frac{100}{5} = 2; \ y = \frac{\Delta_2}{\Delta} = \frac{-5}{5} = -1 \ and \ z = \frac{\Delta_3}{\Delta} = \frac{0}{5} = 0$$

$$\therefore \ x = 2, \ y = -1, \ z = 0$$

Applications of cramer's rule to mesh analysis

The following is an example to demonstrate the application of cramer's rule to solve mesh current analysis problems;

Mesh Current Analysis Circuit

One simple method of reducing the amount

of math's involved is to

analyse the circuit using Kirchhoff's Current Law equations to determine the currents, I_1 and I_2 flowing in the two resistors. Then there is no need to calculate the current I_3 as its just the sum of I_1 and I_2 . So Kirchhoff's second voltage law simply becomes:

- Equation No 1 : $10 = 50I_1 + 40I_2$
- Equation No 2 : $20 = 40I_1 + 60I_2$

The above equations can be solved using cramer's rule, resulting in detection of I_1 and I_2 . The following are the problems for practice:

I)Evaluate the following :

1)
$$\begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} (2) \begin{vmatrix} 3 & -2 \\ 1 & -1 \end{vmatrix} (3) \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{vmatrix}$$

(4) $\begin{vmatrix} 1 & -1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1 \end{vmatrix} (5) \begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{vmatrix}$
(II)Find the value of 'x' in the following:
1) $\begin{vmatrix} x & -1 \\ 2 & 1 \end{vmatrix} = 0 (2) \begin{vmatrix} x & 8 \\ 8 & x \end{vmatrix} = 0 (3) \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & x \\ 7 & 8 & 9 \end{vmatrix} = 0 (4) \begin{vmatrix} 1 & 2 & 9 \\ 2 & x & 0 \\ 3 & 7 & -6 \end{vmatrix} = 0 (5) \begin{vmatrix} 2 & x - 1 & -3 \\ 1 & -2 & 4 \\ 3 & -1 & 5 \end{vmatrix} = 3x-1.$
1.

(III) solve by cramer's rule:

(IV) a) Find the value of R_1 and R_2 cramer's rule:

 R_1 + $4R_2$ =70, $2R_2$ - $3R_1$ = 0

b)In an electrical network, currents i_1 , i_2 , i_3 are given by,

$$3i_1 + i_2 + i_3 = 8,$$

 $2i_1 - 3i_2 - 2i_3 = -5,$
 $7i_1 + 2i_2 - 5i_3 = 0.$

Calculate the current i₂ using cramer's rule.

Mcq's:

1)Which among the following matrices can be expanded as a determinant.

(a) $\begin{bmatrix} 1 & 2 & 4 \\ 6 & 3 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 4 \\ 6 & 7 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 5 & 7 \end{bmatrix}$

Ans: option (b).

2) which among the following statements is true?

(a) A det is a square matrix of order n xn.

(b) A det is a real number associated with a square matrix.

(c)A det is always singular.

(d)A det is a matrix with equal number of rows and columns. Ans: option (b).

3) The det value of $\begin{vmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{vmatrix}$ is (a) 3 (b) 15 (c) 30 (d) 10. Ans: option (c).

4) If matrix ' A ' is singular matrix , then (a) |A| = 100 (b)|A| = 0 (c)|A| is plural

(d)|A| is any real number

Ans: option (b) 5) If A = $\begin{bmatrix} 1 & 2 \\ 3 & x \end{bmatrix}$ is singular, then x= (b) -6 (c) 16 (d) 0. (a) 6 Ans: option (a). MCO'S ON CRAMER'S RULE 1)Which among the following is a method to solve system of simultaneous equations: (a)chain rule (b) Pythagoras rule (c) cramer's rule (d) rule of matrix soln: option (c). 2) To find value of 'x' in the system of equations : x + y = 1 and 2x + 3y = 2how many determinants are required in Cramer's rule (a)1 (b) 2 (c) 3 (d) 4 Soln: option (b) 3) To find value of 'x' and 'y' in the system of equations : x+ y =1 and 2x +3y =2 how many determinants are required in Cramer's rule (a)1 (b) 2 (c) 3 (d) 4Soln: option (c) 4) The solution set of linear equations: x + y = 1 and 2x + 3y = 2 is (b) x=0, y=1 (c) x=-1, y=0 (d) x=0, y=0 (a)x=1, y=0Soln: option (a) $\Delta = 1$, $\Delta_1 = 1$, $\Delta_2 = 0$ $x = \frac{\Delta_1}{\Lambda} = \frac{1}{1} = 1$ and $y = \frac{\Delta_2}{\Lambda} = \frac{0}{1} = 0$ 5) The value of 'x' that satisfies the system of equations 3x+4y=7 and 7x -y=6 is (b) x=10 (a)x = -2(c) x=1(d) x=0Soln: option (c) $\Delta = -31$, $\Delta_1 = -31$, $x = \frac{\Delta_1}{\Delta} = \frac{1}{1} = 1$ Consider the system of equations: $a_1 x + b_1 y = c_1$ and $a_2 x + b_2 y = c_2$ $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \qquad (\text{ det of coefficient})$ $\Delta_1 = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1 b_2 - c_2 b_1 \quad (\text{ det obtained by replacing } 1^{\text{st}} \text{ column f } \Delta \text{ by}$

constants*c*₁, *c*₂)

 $\Delta_2 = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1 c_2 - a_2 \qquad (\text{ det obtained by replacing } 2^{\text{nd}} \text{ column of } \Delta \text{ by}$

constants c_1, c_2)

Therefore,
$$x = \frac{\Delta_1}{\Delta}$$
 and $y = \frac{\Delta_2}{\Delta}$. Provaided $(\Delta \neq 0)$

Cramer's Rule can also be used to solve the simultaneous equations of 'n' variables

Example

Solve 2x + 3y = 1; 3x - y = -2 by Cramer's rule.

Soln:
$$\Delta = \begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = (2)(-1) - (3)(3) = -2 - 9 = -11$$

 $\Delta_1 = \begin{vmatrix} 1 & 3 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (-2)(3) = 1 + 6 = 5$
 $\Delta_2 = \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} = (2)(-2) - (1)(3) = -4 - 3 = -7$
Therefore, $\mathbf{x} = \frac{A_1}{A} = \frac{5}{-11}$ and $\mathbf{y} = \frac{A_2}{A} = \frac{-7}{-11} = \frac{7}{11}$

Worked Examples on Cramer's Rule

1) Solve the equations 2x + y = 1; 3x + 2y = 1 by method of determinants.

Soln: Given system of equation is 2x + y = 1

$$3x + 2y = 1$$

$$let \Delta = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 4 - 3 = 1$$

$$\Delta_{1} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1$$

$$\Delta_{2} = \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = 2 - 3 = -1$$
Www.mathswithme.in

now
$$x = \frac{\Delta_1}{\Delta} = \frac{1}{1} = 1$$
 and $y = \frac{\Delta_2}{\Delta} = \frac{-1}{1} = -1$

$\therefore x = 1$ and y = -1

2) Solve the equations x + y = 3; 2x + 3y = 8 by Cramer's rule

Soln: Given system of equation is x + y = 3

$$2x + 3y = 8$$

$$let \Delta = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 3 - 2 = 1;$$

$$\Delta_1 = \begin{vmatrix} 3 & 1 \\ 8 & 3 \end{vmatrix} = 9 - 8 = 1 \quad and$$

$$\Delta_2 = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 8 - 6 = 2$$

$$now \ x = \frac{\Delta_1}{\Delta} = \frac{1}{1} = 1 \text{ and } y = \frac{\Delta_2}{\Delta} = \frac{2}{1} = 2$$

$$\therefore x = 1 \text{ and } y = -1$$

3) Solve 2x - 3y = 5, 7x - y = 8 by Cramer's rule.

Soln: Given system of the equations is 2x - 3y = 5

$$7x - y = 8$$

$$let \quad \Delta = \begin{vmatrix} 2 & -3 \\ 7 & -1 \end{vmatrix} = -2 + 21 = 19$$
$$\Delta_1 = \begin{vmatrix} 5 & -3 \\ 8 & -1 \end{vmatrix} = -5 + 2 = 19$$
$$\Delta_2 = \begin{vmatrix} 2 & 5 \\ 7 & 8 \end{vmatrix} = 16 - 35 = -19$$
$$now \ x = \frac{\Delta_1}{\Delta} = \frac{19}{19} = 1 \ and \ y = \frac{\Delta_2}{\Delta} = \frac{-19}{19} = -1$$
$$\therefore \ x = 1 \ and \ y = -1$$

4) Solve 3u + 4v = 10; 2u - 3v = 1 by Cramer's rule

Soln: Given system of equation is 3u + 4v = 10

$$2u - 3v = 1$$

$$let \Delta = \begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix} = -9 - 8 = -17;$$

$$\Delta_1 = \begin{vmatrix} 10 & 4 \\ 1 & -3 \end{vmatrix} = -30 - 4 = -34$$

$$\Delta_2 = \begin{vmatrix} 3 & 10 \\ 2 & 1 \end{vmatrix} = 3 - 20 = -17$$

$$now \ u = \frac{\Delta_1}{\Delta} = \frac{-34}{-17} = 2 \text{ and } u = \frac{\Delta_2}{\Delta} = \frac{-17}{-17} = 1$$

$$\therefore u = 2 \text{ and } v = 1$$

EXERCISE

Solve by Cramer's Rule:

- 1) 3x+y = 4, x+3y = 4
- (2) 2x 3y = 5, 7x y = 8
- (3) 5x+3y=1, 3x+5y=-9
- (4) y=4, x+3y=4
- (5) 3x + 4y 7 = 0, 7x y 6 = 0
- (6) $R_1 + 4R_2 = 70, 2R_2 3R_1 = 0$

Minor of an element of a matrix: Minor of an element a_{ij} of a matrix is the determinant

obtained by deleting i^{th} row and j^{th} column of matrix.

Steps to find Minor of an element

For each element of the matrix

Step (1): Delete the elements on the current row and column

Step (2): Calculate the determinant of remaining elements

Example 1: Consider a 2 × 2 matrix $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ Follow the same method to find the Minor of remaining

Minor of $b_1 = |a_2| = a_2$ Minor of $b_2 = |a_1| = a_1$

Example 2: Consider a 3 × 3 matrix A = $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

Minor of

a₁ =

To find Minor of a_1

Step (1): $\begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$ Follow the same method to find the Minor of remaining elements

Step (2):
$$\begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} = (b_2 c_3 - b_3 c_2)$$

$$\begin{vmatrix} b_{2} & b_{3} \\ c_{2} & c_{3} \end{vmatrix} = (b_{2}c_{3} - b_{3}c_{2})$$

Minor of $a_{2} = \begin{vmatrix} b_{1} & b_{3} \\ c_{1} & c_{3} \end{vmatrix} = (b_{1}c_{3} - b_{3}c_{1})$
Minor of $a_{3} = \begin{vmatrix} b_{1} & b_{2} \\ c_{1} & c_{2} \end{vmatrix} = (b_{1}c_{2} - b_{2}c_{1})$
Minor of $b_{1} = \begin{vmatrix} a_{2} & a_{3} \\ c_{2} & c_{3} \end{vmatrix} = (a_{2}c_{3} - a_{3}c_{2})$
Minor of $b_{2} = \begin{vmatrix} a_{1} & a_{3} \\ c_{1} & c_{3} \end{vmatrix} = (a_{1}c_{3} - a_{3}c_{1})$
Minor of $b_{3} = \begin{vmatrix} a_{1} & a_{2} \\ c_{1} & c_{2} \end{vmatrix} = (a_{1}c_{2} - a_{2}c_{1})$
Minor of $c_{1} = \begin{vmatrix} a_{2} & a_{3} \\ b_{2} & b_{3} \end{vmatrix} = (a_{2}b_{3} - a_{3}b_{2})$
Minor of $c_{2} = \begin{vmatrix} a_{1} & a_{3} \\ b_{1} & b_{3} \end{vmatrix} = (a_{1}b_{2} - a_{2}b_{1})$

Problems on finding minor of an element of a matrix

1: Find the minor of 2 and 4 from the matrix $\begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$ Solution: Let $A = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$ Minor of 2 = |8| = 8Minor of 4 = |6| = 62: Find the minor of -2 and -5 from the matrix $\begin{bmatrix} 1 & -3 \\ -2 & -5 \end{bmatrix}$

Solution: Let $A = \begin{bmatrix} 1 & -3 \\ -2 & -5 \end{bmatrix}$

Minor of -2 = |-3| = -3Minor of -5 = |1| = 1

3: Find the minor of 1 from the matrix $\begin{bmatrix} 1 & 2 & 6 \\ 3 & 4 & 7 \\ 8 & 9 & 5 \end{bmatrix}$

Solution: Let $A = \begin{bmatrix} 1 & 2 & 6 \\ 3 & 4 & 7 \\ 8 & 9 & 5 \end{bmatrix}$

Minor of
$$1 = \begin{vmatrix} 4 & 7 \\ 9 & 5 \end{vmatrix} = (4 \times 5) - (7 \times 9) = 20 - 63 = -43$$

4: Find the minor of 5 and -3 from the matrix $\begin{bmatrix} 2 & 5 & 6 \\ -1 & 4 & -3 \\ 0 & 9 & 7 \end{bmatrix}$

Solution: Let A = $\begin{bmatrix} 2 & 5 & 6 \\ -1 & 4 & -3 \\ 0 & 9 & 7 \end{bmatrix}$ Minor of 5 = $\begin{vmatrix} -1 & -3 \\ 0 & 7 \end{vmatrix}$ = $(-1 \times 7) - (-3 \times 0) = -7 - 0 = -7$ Minor of -3 = $\begin{vmatrix} 2 & 5 \\ 0 & 9 \end{vmatrix}$ = $(2 \times 9) - (5 \times 0) = 18 - 0 = 18$

Cofactor of an element: Cofactor of an element is minor of the element with + or – sign given to it. If the element is in the *i*th row and *j*th column, the sign to be allocated is $(-1)^{i+j}$.

Steps to find Cofactor of an element

For each element of the matrix

Step (1): Allocate the + or – sign by using $(-1)^{i+j}$ or $\begin{bmatrix} + & -\\ - & + \end{bmatrix}$ or $\begin{bmatrix} + & - & +\\ - & + & -\\ + & - & + \end{bmatrix}$

Step (2): Delete the elements on the current row and column Step (3): Calculate the determinant of remaining elements

Example 1: Consider a 2 × 2 matrix A = $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$

To find Cofactor of a₁

Step (1): Allocate + or – sign by using $(-1)^{i+j}$ or

Step (2): $+\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$ Step (3): $+|b_2| = b_2$

Follow the same method to find cofactors of remaining elements

Page 25

COfactor of $\mathbf{a_1}(\mathbf{C} \text{ of } \mathbf{a_1}) = +|\mathbf{b_2}| = \mathbf{A_1}$ C of $\mathbf{a_2} = -|\mathbf{b_1}| = \mathbf{A_2}$ C of $\mathbf{b_1} = -|\mathbf{a_2}| = \mathbf{B_1}$ C of $\mathbf{b_2} = +|\mathbf{a_1}| = \mathbf{B_2}$ \therefore Cofcator matrix of $\mathbf{A} = \begin{bmatrix} \mathbf{A_1} & \mathbf{A_2} \\ \mathbf{B_1} & \mathbf{B_2} \end{bmatrix}$

Example 2: Consider a 3 × 3 matrix A = $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

To find Cofactor of a_1 Step (1): Allocate the + or – sign by using $(-1)^{i+j}$ or $\begin{bmatrix} a_1 & a_2 & a_3 \\ & & & a_2 \end{bmatrix}$

Step (2): + $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ Follow the same method to find cofactors of remaining Step (3): + $\begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} = +(b_2c_3 - b_3c_2)$

Cofactor of
$$\mathbf{a_1}(\mathbf{C} \text{ of } \mathbf{a_1}) = + \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} = +(b_2c_3 - c_2b_3) = b_2c_3 - b_3c_2 = A_1$$

 $\mathbf{C} \text{ of } \mathbf{a_2} = - \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} = -(b_1c_3 - b_3c_1) = -b_1c_3 + b_3c_1 = A_2$
 $\mathbf{C} \text{ of } \mathbf{a_3} = + \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = +(b_1c_2 - b_2c_1) = b_1c_2 - b_2c_1 = A_3$
 $\mathbf{C} \text{ of } \mathbf{b_1} = - \begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix} = -(a_2c_3 - a_3c_2) = -a_2c_3 + a_3c_2 = B_1$
 $\mathbf{C} \text{ of } \mathbf{b_2} = + \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} = +(a_1c_3 - a_3c_1) = a_1c_3 - a_3c_1 = B_2$
 $\mathbf{C} \text{ of } \mathbf{b_3} = - \begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix} = -(a_1c_2 - a_2c_1) = -a_1c_2 + a_2c_1 = B_3$
 $\mathbf{C} \text{ of } \mathbf{c_1} = + \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} = +(a_2b_3 - a_3b_2) = a_2b_3 - a_3b_2 = C_1$

C of c₂ = $-\begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} = -(a_1c_3 - a_3c_1) = -a_1c_3 + a_3c_1 = C_2$ **C of c**₃ = $+\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = +(a_1b_2 - a_2b_1) = a_1b_2 - a_2b_1 = C_3$ \therefore Cofcator matrix of A = $\begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$

Problems on finding cofactor of an element of a matrix

1: Find the cofactor of 3 and 5 from the matrix $\begin{bmatrix} 3 & 5 \\ 7 & 0 \end{bmatrix}$ Solution: Let $A = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$ Note: use these signs $\begin{bmatrix} + & - \\ - & + \end{bmatrix}$ to find the cofactor of an element **Cofactor of 3** = +|9| = 9**Cofactor of 5** = -|7| = -7**2:** Find the cofactor matrix of $A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$ Solution: Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$ **Cofactor of** $1(C ext{ of } 1) = +|5| = 5$ **C of 3** = -|2| = -2**C of 2** = -|3| = -3**C of 5** = +|1| = 1: Cofcator matrix of A = $\begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix}$ **3:** Find the cofactor of 5 and 6 from the matrix $\begin{bmatrix} 3 & 2 & 5 \\ 7 & 8 & 2 \\ 1 & c & 4 \end{bmatrix}$ Solution: Let $A = \begin{bmatrix} 3 & 2 & 5 \\ 7 & 8 & 2 \\ 1 & 6 & 4 \end{bmatrix}$ **Cofactor of 5** = $+\begin{vmatrix} 7 & 8 \\ 1 & 6 \end{vmatrix}$ = +(42 - 8) = +(34) = 34**Cofactor of 6** = $-\begin{vmatrix} 3 & 5 \\ 7 & 2 \end{vmatrix} = -(6 - 35) = -(-29) = 29$ **4:** Find the cofactor matrix of $\begin{bmatrix} 5 & 1 & 3 \\ 4 & 2 & 6 \\ 2 & 1 & 4 \end{bmatrix}$ Solution: Let $A = \begin{bmatrix} 5 & 1 & 3 \\ 4 & 2 & 6 \\ 2 & 1 & 4 \end{bmatrix}$

Note: use these signs $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$ to find the cofactor of an element **Cofactor of 5 (C of 5)** = $+ \begin{vmatrix} 2 & 6 \\ 1 & 4 \end{vmatrix} = +(8-6) = +(2) = 2$ **C of 1** = $-\begin{vmatrix} 4 & 6 \\ 2 & 4 \end{vmatrix}$ = -(16 - 12) = -(4) = -4www.mathswithme.in **C of 3** = $+ \begin{vmatrix} 4 & 2 \\ 2 & 1 \end{vmatrix} = +(4 - 4) = 0$ **C of 4** = $-\begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix} = -(4-3) = -(1) = 1$ **C of 2** = $+\begin{vmatrix} 5 & 3 \\ 2 & 4 \end{vmatrix}$ = +(20 - 6) = +(14) = 14**C of 6** = $-\begin{vmatrix} 5 & 1 \\ 2 & 1 \end{vmatrix} = -(5-2) = -(3) = -3$ **C of 2** = $+\begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix} = +(6-6) = 0$ **C of 1** = $-\begin{vmatrix} 5 & 3 \\ 4 & 6 \end{vmatrix}$ = -(30 - 12) = -(18) = -18**C of 4** = $+ \begin{vmatrix} 5 & 1 \\ 4 & 2 \end{vmatrix} = +(10 - 4) = +(6) = 6$ $\therefore \text{ Cofactor matrix of A} = \begin{bmatrix} 2 & -4 & 0 \\ 1 & 14 & -3 \\ 0 & 19 & 6 \end{bmatrix}$ Model questions(4marks) 1. Find the cofactor matrix of $\begin{bmatrix} 1 & 2 & 3 \\ 5 & 4 & 1 \\ 4 & 2 & 3 \end{bmatrix}$ 2. Find the cofactor matrix of $\begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 9 \\ 1 & r & 4 \end{bmatrix}$ 3. If $A = \begin{bmatrix} 4 & 1 & 5 \\ -1 & 0 & 7 \\ 2 & 2 & 2 \end{bmatrix}$ Find the cofactor matrix of A

Adjoint of a matrix: Let A be square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by **adj A**. i.e. **adj A = [cofactor matrix of A]**^T

Steps to find adjoint of a matrix

Step (1): Find the cofactors of every element in the given matrix.

Step (2): Write down the cofactor matrix.

Step (3): Find the transpose of the cofactor matrix.

Example 1: Consider a 2 × 2 matrix $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$

Cofactor matrix of A = $\begin{bmatrix} A_1 & A_2 \\ B_1 & B_2 \end{bmatrix}$

NOTE: Where A_1, A_2, B_1 and B_2 are the cofactors of a_1, a_2, b_1 and b_2 respectively.

We know that, Adjoint of A(adjA)= [cofactor matrix of A]^T

$$= \begin{bmatrix} A_1 & A_2 \\ B_1 & B_2 \end{bmatrix}^{\mathrm{T}}$$

Therefore, Adjoint of $A = \begin{bmatrix} A_1 & B_1 \\ A_2 & B_2 \end{bmatrix}$

Example 2: Consider a 3 × 3 matrix A = $\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

Cofactor matrix of A = $\begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$

NOTE: Where A₁, A₂, A₃, B₁, B₂, B₃, C₁, C₂ and C₃ are the cofactors of a₁, a₂, a₃, b₁, b₂, b₃, c₁, c₂ and c₃ respectively.

We know that, Adjoint of A(adjA)= [cofactor matrix of A]^T

$$= \begin{bmatrix} A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3} \end{bmatrix}^{T}$$

Therefore, Adjoint of A =
$$\begin{bmatrix} A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3} \end{bmatrix}$$

NOTE: For any square matrix of A, A(adjA) = (adjA)A = |A|I

Problems on finding adjoint of a matrix

1: If $A = \begin{bmatrix} 4 & 2 \\ 5 & 1 \end{bmatrix}$ find Adjoint of matrix A. Solution: Given $A = \begin{bmatrix} 4 & 2 \\ 5 & 1 \end{bmatrix}$ $\begin{bmatrix} + & - \\ - & + \end{bmatrix}$ Cofactor of 4 (C of 4) = +|1| = 1 C of 2 = -|5| = -5 C of 5 = -|2| = -2 C of 1 = +|4| = 4 \therefore Cofactor matrix of $A = \begin{bmatrix} 1 & -5 \\ -2 & 4 \end{bmatrix}$ We know that, adjA= [cofactor matrix of A] ^T

PDE I, adjA = $\begin{bmatrix} 3 & -7 \\ -9 & 2 \end{bmatrix}$

$$adjA = \begin{bmatrix} 1 & -5 \\ -2 & 4 \end{bmatrix}^{T}$$
$$adjA = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$$

NOTE: Adjoint of 2×2 matrix can be found out by interchange the principal diagonal elements (PDE) and interchange the signs of remaining elements.

For example, If $A = \begin{bmatrix} 7\\ 9\\ 3\end{bmatrix}$ PD 2: Find the adjoint of the matrix $A = \begin{bmatrix} 6 & 5\\ -1 & 8 \end{bmatrix}$

Solution: Given $A = \begin{bmatrix} 6 & 5 \\ -1 & 8 \end{bmatrix}$ $\begin{bmatrix} + & - \\ - & + \end{bmatrix}$ C of 6 = +|8| = 8C of 5 = -|-1| = +1C of -1 = -|5| = -5C of 8 = +|6| = 6Cofactor matrix of $A = \begin{bmatrix} 8 & 1 \\ -5 & 6 \end{bmatrix}$

We know that, adj A= [cofactor matrix of A]^T

$$adjA = \begin{bmatrix} 8 & 1 \\ -5 & 6 \end{bmatrix}^{T}$$
$$adjA = \begin{bmatrix} 8 & -5 \\ 1 & 6 \end{bmatrix}$$

3: If $A = \begin{bmatrix} 3 & 1 & 5 \\ 6 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ find adjA. Solution: Given $A = \begin{bmatrix} 3 & 1 & 5 \\ 6 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$ C of $3 = + \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = +(1 - 4) = +(-3) = -3$ C of $1 = -\begin{vmatrix} 6 & 2 \\ 4 & 1 \end{vmatrix} = -(6 - 8) = -(-2) = 2$ C of $5 = +\begin{vmatrix} 6 & 1 \\ 4 & 2 \end{vmatrix} = +(12 - 4) = +(8) = 8$ C of $6 = -\begin{vmatrix} 1 & 5 \\ 2 & 1 \end{vmatrix} = -(1 - 10) = -(-9) = 9$ C of $1 = +\begin{vmatrix} 3 & 5 \\ 4 & 1 \end{vmatrix} = +(3 - 20) = +(-17) = -17$ C of $2 = -\begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix} = -(6 - 4) = -(2) = -2$ C of $4 = +\begin{vmatrix} 1 & 5 \\ 1 & 2 \end{vmatrix} = +(2 - 5) = +(-3) = -3$

C of 2 = $-\begin{vmatrix} 3 & 5 \\ 6 & 2 \end{vmatrix}$ = -(6 - 30) = -(-24) = 24**C of 1** = $+\begin{vmatrix} 3 & 1 \\ 6 & 1 \end{vmatrix}$ = +(3-6) = +(-3) = -3: Cofactor matrix of A = $\begin{bmatrix} -3 & 2 & 8\\ 9 & -17 & -2\\ -3 & 24 & -3 \end{bmatrix}$ We know that, adj A= [cofactor matrix of A]^T $adjA = \begin{bmatrix} -3 & 2 & 8\\ 9 & -17 & -2\\ -3 & 24 & -3 \end{bmatrix}^{t}$ $adjA = \begin{bmatrix} -3 & 9 & -3 \\ 2 & -17 & 24 \\ 8 & -2 & -3 \end{bmatrix}$ 4: Find the adjoint of $\begin{bmatrix} 3 & -1 & 2 \\ 2 & -3 & 1 \\ 0 & 4 & 2 \end{bmatrix}$ Solution: Given $A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & -3 & 1 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$ **Cof 3** = + $\begin{vmatrix} -3 & 1 \\ 4 & 2 \end{vmatrix}$ = +(-6 - 4) = +(-10) = -10 **C of** $-1 = -\begin{vmatrix} 2 & 1 \\ 0 & 2 \end{vmatrix} = -(4 - 0) = -(4) = -4$ **C of 2** = + $\begin{vmatrix} 2 & -3 \\ 0 & 4 \end{vmatrix}$ = +(8 - 0) = +(8) = 8 **C of 2** = $-\begin{vmatrix} -1 & 2 \\ 4 & 2 \end{vmatrix}$ = -(-2 - 8) = -(-10) = 10**C of** $-3 = + \begin{vmatrix} 3 & 2 \\ 0 & 2 \end{vmatrix} = +(6-0) = +(6) = 6$ **C of 1** = $-\begin{vmatrix} 3 & -1 \\ 0 & 4 \end{vmatrix}$ = -(12 - 0) = -(12) = -12**C of 0** = + $\begin{vmatrix} -1 & 2 \\ -3 & 1 \end{vmatrix}$ = +(-1+6) = +(5) = 5 **C of 4** = $-\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix}$ = -(3 - 4) = -(-1) = 1**C of 2** = + $\begin{vmatrix} 3 & -1 \\ 2 & -3 \end{vmatrix}$ = +(-9 + 2) = +(-7) = -7 : Cofactor matrix of A = $\begin{bmatrix} -10 & -4 & 8 \\ 10 & 6 & -12 \\ 5 & 1 & -7 \end{bmatrix}$ We know that, adj A= [cofactor matrix of A]^T

$$adjA = \begin{bmatrix} -10 & -4 & 8\\ 10 & 6 & -12\\ 5 & 1 & -7 \end{bmatrix}^{T}$$
$$adjA = \begin{bmatrix} -10 & 10 & 5\\ -4 & 6 & 1\\ 8 & -12 & -7 \end{bmatrix}$$

Model questions (4marks)

- 1. Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- 2. If $A = \begin{bmatrix} 2 & 1 \\ -3 & 3 \end{bmatrix}$ find adjA 3. If $A = \begin{bmatrix} 5 & 1 \\ 6 & 8 \end{bmatrix}$ find Adjoint of A

Model questions (5marks)

- 1. Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 3 \end{bmatrix}$
- 2. If $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & -3 \end{bmatrix}$ find Adjoint of A 3. If $A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 2 & 3 \end{bmatrix}$ find adjA

Singular matrix: A square matrix 'A' is said to be singular if and only if |A| = 0 **Example:** $A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix}$ is a singular matrix because |A| = 0**Non-singular matrix:** A square matrix 'A' is said to be non-singular if and only

Example: A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a non-singular matrix because $|A| \neq 0$

Inverse of a matrix: If a matrix 'A' is non-singular ($|A| \neq 0$), the inverse of matrix A can

be defined.

if $|A| \neq 0$

i.e. $A^{-1} = \frac{1}{|A|} adjA$

What is the Inverse of a Matrix?

This is the reciprocal of a number:

The **Inverse of a Matrix** is the same idea but we write it A^{-1}

Why not $\frac{1}{A}$? Because we don't divide by a matrix!

Why Do We Need an Inverse?

Because with matrices we **don't divide**! Seriously, there is no concept of dividing by a matrix.

But we can **multiply by an inverse**, which achieves the same thing. **Steps to find inverse of a matrix**

Step (1): Find the determinant of a given matrix $(|A| \neq 0)$.

Step (2): Find the adjoint of a given matrix.

Step (3): substitute |A| value and adjoint of A in the formula $A^{-1} = \frac{1}{|A|} adjA$

NOTE 1: If A and B are two non-singular matrices of same order then $(AB)^{-1} = B^{-1}A^{-1}$ **NOTE 2:** $AA^{-1} = A^{-1}A = I$

www.mathswithme.in

Problems on finding inverse of a matrix

1: Find inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 8 \end{bmatrix}$ Solution: Given $A = \begin{bmatrix} 1 & 3 \\ 2 & 8 \end{bmatrix}$ Consider $|A| = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = (8 - 6) = 2 \neq 0$

Therefore A⁻¹ exists.

To find **adjA** interchange the principal diagonal elements and interchange the signs of remaining elements.

From the matrix A,
$$adjA = \begin{bmatrix} 8 & -3 \\ -2 & 1 \end{bmatrix}$$

We know that, $A^{-1} = \frac{1}{|A|} adjA$
 $A^{-1} = \frac{1}{2} \begin{bmatrix} 8 & -3 \\ -2 & 1 \end{bmatrix}$
2: Find the inverse of the matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$
Solution: Given $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{bmatrix}$

Type equation here.

Consider
$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 4 & -1 & -2 \end{vmatrix} = 1(-2+1) + 1(-4-4) + 2(-2-4) = -21 \neq 0$$

Therefore A^{-1} exists.

To find adjoint of matrix A

 $C \text{ of } \mathbf{1} = + \begin{vmatrix} 1 & 1 \\ -1 & -2 \end{vmatrix} = +(-2+1) = +(-1) = -1$ $C \text{ of } -\mathbf{1} = - \begin{vmatrix} 2 & 1 \\ 4 & -2 \end{vmatrix} = -(-4-4) = -(-8) = 8$ $C \text{ of } \mathbf{2} = + \begin{vmatrix} 2 & 1 \\ 4 & -1 \end{vmatrix} = +(-2-4) = +(-6) = -6$ $C \text{ of } \mathbf{2} = - \begin{vmatrix} -1 & 2 \\ -1 & -2 \end{vmatrix} = -(2+2) = -(4) = -4$ $C \text{ of } \mathbf{1} = + \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} = +(-2-8) = +(-10) = -10$ $C \text{ of } \mathbf{1} = - \begin{vmatrix} 1 & -1 \\ 4 & -1 \end{vmatrix} = -(-1+4) = -(3) = -3$ $C \text{ of } \mathbf{4} = + \begin{vmatrix} -1 & 2 \\ 1 & 1 \end{vmatrix} = +(-1-2) = +(-3) = -3$ $C \text{ of } -\mathbf{1} = - \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = -(1-4) = -(-3) = 3$ $C \text{ of } -\mathbf{2} = + \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = +(1+2) = +(3) = 3$

We know that, adjA= [cofactor matrix of A]^T

$$adjA = \begin{bmatrix} -1 & 8 & -6 \\ -4 & -10 & -3 \\ -3 & 3 & 3 \end{bmatrix}^{T}$$

$$adjA = \begin{bmatrix} -1 & -4 & -3 \\ 8 & -10 & 3 \\ -6 & -3 & 3 \end{bmatrix}$$

We know that, $A^{-1} = \frac{1}{|A|} adjA$

$$A^{-1} = -\frac{1}{21} \begin{bmatrix} -1 & -4 & -3 \\ 8 & -10 & 3 \\ -6 & -3 & 3 \end{bmatrix}$$

3: If $A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & -1 & 2 \\ 5 & 1 & -2 \end{bmatrix}$ find A^{-1}
Solution: Given $A = \begin{bmatrix} 1 & 2 & 4 \\ 3 & -1 & 2 \\ 5 & 1 & -2 \end{bmatrix}$
Consider $|A| = \begin{vmatrix} 1 & 2 & 4 \\ 3 & -1 & 2 \\ 5 & 1 & -2 \end{vmatrix} = 1(2-2) - 2(-6-10) + 4(3+5) = 64 \neq 0$
Therefore A^{-1} exists.
To find adjoint of matrix A
C of $\mathbf{1} = + \begin{vmatrix} -1 & 2 \\ 1 & -2 \end{vmatrix} = +(2-2) = +(0) = 0$

$$C \text{ of } 2 = -\begin{vmatrix} 3 & 2 \\ 5 & -2 \end{vmatrix} = -(-6 - 10) = -(-16) = 16$$

$$C \text{ of } 4 = +\begin{vmatrix} 3 & -1 \\ 5 & 1 \end{vmatrix} = +(3 + 5) = +(8) = 8$$

$$C \text{ of } 3 = -\begin{vmatrix} 2 & 4 \\ 1 & -2 \end{vmatrix} = -(-4 - 4) = -(-8) = 8$$

$$C \text{ of } -1 = +\begin{vmatrix} 1 & 4 \\ 5 & -2 \end{vmatrix} = +(-2 - 20) = +(-22) = -22$$

$$C \text{ of } 2 = -\begin{vmatrix} 1 & 2 \\ 5 & 1 \end{vmatrix} = -(1 - 10) = -(-9) = 10$$

$$C \text{ of } 5 = +\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = +(4 + 4) = +(8) = 8$$

$$C \text{ of } 1 = -\begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} = -(2 - 12) = -(-10) = 10$$

$$C \text{ of } -2 = +\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = +(-1 - 6) = +(-7) = -7$$

We know that, adjA= [cofactor matrix of A]^T

$$adjA = \begin{bmatrix} 0 & 16 & 8 \\ 8 & -22 & 10 \\ 8 & 10 & -7 \end{bmatrix}^{T}$$
$$adjA = \begin{bmatrix} 0 & 8 & 8 \\ 16 & -22 & 10 \\ 8 & 10 & -7 \end{bmatrix}$$

We know that, $A^{-1} = \frac{1}{|A|} \operatorname{adj} A$

$$A^{-1} = \frac{1}{64} \begin{bmatrix} 0 & 8 & 8\\ 16 & -22 & 10\\ 8 & 10 & -7 \end{bmatrix}$$

Model questions (5marks)

- 1. Find the inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$
- 2. If $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$ find the inverse of A

Model questions (6marks)

- 1. Find the inverse of the matrix $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 1 \\ 5 & 4 & 3 \end{bmatrix}$

2. If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$
 find the inverse of A
3. If $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 3 & -1 & 5 \end{bmatrix}$ find A^{-1}

Characteristic equation of matrix: Let A be square matrix of order n then $|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$ is called characteristic equation of matrix A. Where I is identity matrix of order n and λ is constant.

Characteristic roots of matrix: Let A be square matrix of order n then the roots of the characteristic equation $|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$ are called characteristic roots or eigen values.

NOTE: The sum of the eigen values is equal to the sum of the principal diagonal elements of the matrix.

Problems on finding characteristic equation and eigen values of a 1: Find the characteristic equation of $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$ **Solution:** Given $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$ C.E is given by $|A - \lambda I| = 0$ $\begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 0 \quad \text{(Where I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{Identity matrix)}$ $\begin{vmatrix} 2-\lambda & -1 \\ 3 & 2-\lambda \end{vmatrix} = 0$ $(2-\lambda)(2-\lambda)+3=0$ $4 - 2\lambda - 2\lambda + \lambda^2 + 3 = 0$ $\lambda^2 - 4\lambda + 7 = 0$ is required characteristic equation. 2: Find the characteristic equation of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ **Solution:** Given $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ C.E is given by $|A - \lambda I| = 0$ $\left| \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = 0$ $\begin{vmatrix} 1-\lambda & 2\\ 3 & 4-\lambda \end{vmatrix} = 0$ $(1-\lambda)(4-\lambda)-6=0$ $4 - \lambda - 4\lambda + \lambda^2 - 6 = 0$

 $\lambda^2 - 5\lambda - 2 = 0$ is required characteristic equation.

3: Find the characteristic equation and eigen values of $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$

Solution: Given $A = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$ C.E is given by $|A - \lambda I| = 0$ $\begin{vmatrix} \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$ $\begin{vmatrix} 3 - \lambda & 2 \\ 4 & 5 - \lambda \end{bmatrix} = 0$ $(3 - \lambda)(5 - \lambda) - 8 = 0$ $15 - 3\lambda - 5\lambda + \lambda^2 - 8 = 0$ $\lambda^2 - 8\lambda + 7 = 0$ $\lambda^2 - 7\lambda - 1\lambda + 7 = 0$ $\lambda(\lambda - 7) - 1(\lambda - 7) = 0$ $(\lambda - 7)(\lambda - 1) = 0$ $\lambda - 7 = 0$ or $\lambda - 1 = 0$ $\lambda = 7$ or $\lambda = 1$ $\lambda = 7,1$ are the eigen values of given matrix.

4: If $A = \begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix}$ find the eigen values **Solution:** Given $A = \begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix}$ C.E is given by $|A - \lambda I| = 0$ $\begin{vmatrix} 3 & -1 \\ 0 & -2 \end{vmatrix} - \lambda \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 0$ $\begin{vmatrix} 3-\lambda & -1 \\ 0 & -2-\lambda \end{vmatrix} = 0$ www.mathswithme.in $(3-\lambda)(-2-\lambda)-0=0$ $-6 - 3\lambda + 2\lambda + \lambda^2 - 0 = 0$ $\lambda^2 - \lambda - 6 = 0$ $\lambda^2 - 3\lambda + 2\lambda - 6 = 0$ $\lambda(\lambda - 3) + 2(\lambda - 3) = 0$ $(\lambda - 3)(\lambda + 2) = 0$ $\lambda - 3 = 0$ or $\lambda + 2 = 0$ $\lambda = 3$ or $\lambda = -2$ $\lambda = 3_{7}$ are the eigen values of given matrix. 5: Find the characteristic equation and its roots of $A = \begin{bmatrix} 1 & -1 \\ -6 & -2 \end{bmatrix}$

Solution: Given $A = \begin{bmatrix} 1 & -1 \\ -6 & -2 \end{bmatrix}$ C.E is given by $|A - \lambda I| = 0$ $\left| \begin{bmatrix} 1 & -1 \\ -6 & -2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right| = 0$ $\left| \begin{bmatrix} 1 -\lambda & -1 \\ -6 & -2 - \lambda \end{bmatrix} = 0$ $(1 - \lambda)(-2 - \lambda) - 6 = 0$ $-2 - 1\lambda + 2\lambda + \lambda^2 - 6 = 0$ $\lambda^2 + 1\lambda - 8 = 0$

The above equation is the form of quadratic equation $ax^2 + bx + c = 0$

By using formula X =
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

We get $\lambda = \frac{-1\pm\sqrt{(1)^2-4(1)(-8)}}{2(1)}$
 $\lambda = \frac{-1\pm\sqrt{1+32}}{2}$
 $\lambda = \frac{-1\pm\sqrt{33}}{2}$

 $\lambda = \frac{-1+\sqrt{33}}{2}, \frac{-1-\sqrt{33}}{2}$ are the characteristic roots of given matrix.

Model questions (6marks)

1. Find the characteristic equation and roots for the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ 2. Find the characteristic equation and eigen values for the matrix $\begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$ 3. Find the characteristic equation and eigen values for the matrix $\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ 4. Find the eigen values for the matrix $\begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$

www.mathswithme.in