www.mathswithme.in

Code: 20SC01T

Register					
Number					

I & II Semester Diploma Examination, June/July-2023

ENGINEERING MATHEMATICS

Time : 3 Hours]

1.

[Max. Marks : 100

- Instructions: (i) Answer one full question from each section.
 - One full question carries 20 marks.

SECTION – 1

(a) Solve for x, $\begin{vmatrix} 1 & 2 & 3 \\ 2 & x & 3 \\ 3 & 4 & 3 \end{vmatrix} = 0$ OR If A = $\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$, Find A + A^T.

(ii)

- (b) Using Cramer's rule, find the solution of the system of equations 2y z = 0, and x + 3y = -4, 3x + 4y = 4OR Which of the matrix has no inverse? $A = \begin{bmatrix} 1 & 5\\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & 6\\ -1 & -3 \end{bmatrix} C = \begin{bmatrix} 3 & 2\\ 12 & 8 \end{bmatrix}$ (c) Find the characteristic equation and characteristic roots value for the matrix $\begin{bmatrix} 1 & 2\\ 3 & 1 \end{bmatrix}$ OR $C = \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}$
 - If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix}$, then verify that $(A + B)^T = A^T + B^T$
- (d) Consider the matrix $\begin{bmatrix} 2 & 1 \end{bmatrix}$

If $A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$, find A^{-1} . www.mathswithme.in OR If $A = \begin{bmatrix} 2 & 1 \\ -3 & 5 \end{bmatrix}$ & $B = \begin{bmatrix} 9 & 2 \\ -3 & 5 \end{bmatrix}$, find AB. 5

4

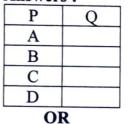
1 of 4

R

[Turn over

2 of 4

SECTION – II (Match the following)


- 2. (a) (A) Equation of a straight line passing through a given point (x, y) and having slope m is
 - (B) Equation of a straight line passing through two points (x_1, y_1) and (x_2, y_2) is
 - (C) The equation of a straight line whose x and y-intercepts are a, b respectively is
 - (D) If two lines are perpendicular then product of their slopes is equal to Q

$$(1) \quad \frac{x}{a} + \frac{y}{b} = 1$$

(2)
$$y - y_1 = m(x - x_1)$$

(4)
$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$$

Answers :

www.mathswithme.in

(Match the following) P

- (A) If two lines with slopes m_1 and m_2 are parallel then ' θ ' is
- (B) Equation of a straight line whose slope is m and y intercept is C.

(C) Slope of line ax + by + c = 0

(D) Slope of a line joining two points $(x_1 y_1)$ and $(x_2 y_2)$.

$$\begin{array}{c} \mathbf{Q} \\ (1) \quad \mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c} \end{array}$$

$$(2)$$
 0 (zero)

(3)
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Answers : P Q A B C D

b

www.mathswithme.in

4

www.mathswithme.in

20SC01T

3 of 4

(b) Find the equation to the perpendicular to the line 6x - 5y - 2 = 0 and passing through (2, -3).

OR

Are the lines 4x + 6y + 7 = 0 and 2x + 3y - 1 = 0 parallel to each other ? Justify. (c) Find the equation of straight line parallel to 5x + 6y - 10 = 0 and passing through the point (-3, 3).

OR

Are the lines 3x + 4y + 7 = 0 and 28x - 21y + 50 = 0 are perpendicular to each other ? Justify.

(d) Find the angle between the lines x + 3y + 5 = 0 and 4x + 2y - 7 = 0OR

Find the equation of straight line which passes through the points (-2, 3) and (-5, 6).

SECTION – III

3. (a) Determine the value of cos(570°) and sin(330°). OR

Convert 45 degree into radian and $\frac{11\pi}{5}$ radian into degree.

(b) If A + B =
$$\frac{\pi}{4}$$
 prove that (1 + tan A) (1 + tan B) = 2
OR

Prove that $\sin 3A = 3\sin A - 4\sin^3 A$

(c) Given
$$\tan A = \frac{18}{17}$$
 and $\tan B = \frac{1}{35}$ show that $A - B = \frac{\pi}{4}$
OR

Show that : $\frac{\cos(360^\circ - A) \cdot \tan(360^\circ + A)}{\cot(270^\circ - A) \cdot \sin(90^\circ + A)} = 1$

(d) Prove that $\cos 55^\circ + \cos 65^\circ + \cos 175^\circ = 0$ OR Show that $\frac{\sin 40^\circ + \sin 20^\circ}{\cos 40^\circ + \cos 20^\circ} = \frac{1}{\sqrt{3}}$

SECTION - IV

4. (a) If
$$y = \sin x + \log x + e^x + \tan x$$
, then find $\frac{dy}{dx} = ?$ 4

If
$$\frac{dy}{dx} = 4x^3 + 3x^2$$
, then find $\frac{d^2y}{dx^2}$ at (1, 2)

OR

www.mathswithme.in

1

[Turn over

6

5

5

4

5

www.mathswithme.in

20SC01T

4 of 4

(b) Using chain rule of differentiation, find the derivative of the function $y = (3x + 8)^5$

OR

Using composite rule find the derivative of the function $y = \log (\sin (\log x))$

(c) The distance covered by a body in t seconds is given by $S = 4t - 5t^2 + 2t^3$, find the velocity and acceleration when t = 2 sec. 5

OR

Distance travelled by a car is given by $S = 160t - 16t^2$ metre and time in seconds. When does the car stop ?

(d) Find the maximum and minimum values of the function $x^3 - x^2 - x = 0$.

OR

Find the equation of the tangent to the curve $y = 2 - 3x + x^2$ at (1, 2) WWW.mathswithme.in

SECTION – V

5. (a) Integrate :
$$\cos x + e^x + \frac{1}{x} + x^2$$
, w.r. to x.

OR

The area under the curve $y = x^2$ between x = 1, and x = 2 is equal to ...

(b) Using the rule of integration by parts evaluate the integral $\int x \sin 2x dx$

OR

Evaluate $\sin 2x \cos 3x \, dx$

(c) Find $\int_{0}^{\pi/2} \sin^2 x \, dx$

Evaluate $\int \sin^5 x \cos x \, dx$

(d) The area enclosed by the curve $y = x^2 + 1$, x-axis between x = 1, x = 3, calculate the area enclosed. 5

OR

Find the volume generated by rotating the curve $y = \sqrt{x+2}$ about x-axis between x = 0 and x = 2.

www.mathswithme.in

www.mathswithme.in

6

5

4

6