
R a v i k u m a r R S A L a b , U n i t 4 P a g e | 1

Subscribe for PMS, Maths, SA Lab, DCET

videos

https://www.youtube.com/@RaviRnandi

Videos by : Ravi kumar R,Lecturer in science,GPT

Bagepalli

UNIT - 4

Introduction to Python Programming:

Python is a high-level, interpreted, and versatile programming language known

for its simplicity, readability, and wide range of applications.

Guido van Rossum created Python in the late 1980s, and it was first

released in 1991.

Python's design philosophy emphasizes code readability and a clean syntax,

making it easy for beginners to learn and use effectively.

Key Features of Python:

1. Easy to Learn: Python's syntax is simple and straightforward, making it an

ideal language for beginners to start their programming journey.

2. Highly Readable: The use of indentation for code blocks and the absence of

unnecessary symbols and keywords make Python code highly readable.

3. Interpreted Language: Python code is executed line by line, allowing for

quick prototyping and ease of debugging.

4. Dynamic Typing: Python is dynamically typed, meaning you don't need to

declare variable types explicitly.

5. Extensive Libraries: Python comes with a vast collection of standard

libraries and third-party modules, providing solutions for various tasks.

6. Cross-platform: Python code can run on different platforms without

modification, making it highly portable.

Example 1: Hello, World!

Let's start with the traditional "Hello, World!" program in Python:

print("Hello, World!")

https://www.youtube.com/@RaviRnandi

Syntax in Programming:

In programming, "syntax" refers to the set of rules that dictate how code should

be written to be considered valid and executable by a computer. Just like human

languages have grammar rules, programming languages have syntax rules. A

single mistake in the syntax can lead to errors and prevent the code from running

correctly.

Syntax of Python:

The syntax of Python refers to the specific rules and guidelines that must be

followed when writing Python code. Python's syntax is designed to be easy to

read and understand, which makes it popular among beginners and experienced

developers alike.

x = 10

y = 5

sum = x + y

difference = x - y

product = x * y

quotient = x / y

print("Sum:", sum)

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 3

print("Difference:", difference)

print("Product:", product)

print("Quotient:", quotient)

age = 18

if age >= 18:

 print("You are an adult.")

else:

 print("You are a minor.")

For loop to print numbers from 1 to 5

for i in range(1, 6):

 print(i)

While loop to print numbers from 1 to 5

i = 1

while i <= 5:

 print(i)

 i += 1

def greet(name):

 print("Hello, " + name + "!")

greet("Alice")

greet("Bob")

Comments in Python:

In Python, comments are non-executable lines of text that are used to add

explanations or notes within the code. Comments are intended for developers to

understand the code better and are ignored by the Python interpreter during

execution. They play a crucial role in making the code more readable and self-

explanatory.

Types of Comments in Python:

Single-line Comments: These comments start with the # symbol and extend only

to the end of the line. Anything written after the # symbol on the same line is

considered a comment and is not executed.

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 5

This is a single-line comment in Python.

print("Hello, World!") # This is also a comment.

1. Multi-line Comments (Docstrings): Multi-line comments are created using

triple quotes ''' or """. They are used for multi-line explanations and are

often referred to as "docstrings" when used for documenting functions or

modules.

'''

This is a multi-line comment.

It can span multiple lines.

'''

print("Hello, World!")

"""

This is another multi-line comment.

It can also span multiple lines.

"""

print("Hello, Python!")

Example Program with Comments:

This is a simple Python program to calculate the area of a rectangle.

Function to calculate the area of a rectangle

def calculate_area(length, width):

 # This is a comment inside the function.

 area = length * width

 return area

Input values

length = 5

width = 3

Calculate and print the area

result = calculate_area(length, width)

print("The area of the rectangle is:", result)

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 7

The program ends here.

In the above program, comments are used to explain the purpose of the

code, the function's working, and the input values. When the program is

executed, all the comments are ignored, and only the executable code is executed.

Comments are an essential part of programming as they improve code

readability, help other developers understand the code, and make code

maintenance easier.

Data Types in Python:

In Python, data types represent the type of data that can be stored in a

variable. Each data type has specific characteristics and operations associated with

it. Python is a dynamically-typed language, meaning you don't need to explicitly

declare the data type of a variable; Python infers it based on the value assigned to

the variable.

Common Data Types in Python:

1. Numeric Types:

1. int: Represents integer numbers (whole numbers without a fractional

part). Example: x = 10

2. float: Represents floating-point numbers (numbers with a decimal

point). Example: y = 3.14

Integer

x = 10

print(x, type(x)) # Output: 10 <class 'int'>

Floating-point

y = 3.14

print(y, type(y)) # Output: 3.14 <class 'float'>

2. String:

 str: Represents a sequence of characters enclosed within single (' ') or

double (" ") quotes. Example: name = "John"

name = "Alice"

print(name, type(name))

Output: Alice <class 'str'>

3. Boolean:

bool: Represents the Boolean values True or False (used for logical

operations). Example: is_student = True

is_student = True

print(is_student, type(is_student))

 # Output: True <class 'bool'>

4. Sequence Types:

1. list: Represents an ordered collection of elements, enclosed within square

brackets []. Example: my_list = [1, 2, 3, 4, 5]

2. tuple: Represents an ordered, immutable collection of elements, enclosed

within parentheses (). Example: my_tuple = (10, 20, 30)

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 9

List

numbers = [1, 2, 3, 4, 5]

print(numbers, type(numbers))

Output: [1, 2, 3, 4, 5] <class 'list'>

Tuple

coordinates = (10, 20)

print(coordinates, type(coordinates))

Output: (10, 20) <class 'tuple'>

5. Mapping Type: dict: Represents a collection of key-value pairs, enclosed

 within curly braces { }. Example: my_dict = {'name': 'John', 'age': 25}

person = {'name': 'John', 'age': 30, 'city': 'New York'}

print(person, type(person))

Output: {'name': 'John', 'age': 30, 'city': 'New York'} <class 'dict'>

6. Set Types:

1. set: Represents an unordered collection of unique elements, enclosed

within

 curly braces { }. Example: my_set = {1, 2, 3, 4, 5}

2. frozenset: Represents an immutable version of a set. Example:

my_frozenset = frozenset({1, 2, 3})

Set

unique_numbers = {1, 2, 3, 4, 5}

print(unique_numbers, type(unique_numbers))

Output: {1, 2, 3, 4, 5} <class 'set'>

Frozenset

immutable_numbers = frozenset({1, 2, 3})

print(immutable_numbers, type(immutable_numbers))

 # Output: frozenset({1, 2, 3}) <class 'frozenset'>

7. None Type:

 None: Represents a special data type that denotes the absence of a value or

a null value. Example: result = None

result = None

print(result, type(result)) # Output: None <class 'NoneType'>

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 11

Introduction to If-Else Statements in Python

1. Introduction to Conditional Statements: Conditional statements in

programming allow us to make decisions based on certain conditions. One of

the most fundamental forms of a conditional statement is the if-else statement.

In Python, the if-else statement is used to execute different blocks of code

based on whether a given condition is True or False.
2. Syntax of the If-Else Statement:

The general syntax of the if-else statement in Python is as follows:

if condition:

 # Code to be executed if the condition is True

else:

 # Code to be executed if the condition is False

3. Example Program: Let's look at a simple example to understand how if-else

statements work:

Program to check if a number is even or odd

Input

num = int(input("Enter a number: "))

Condition check using if-else

if num % 2 == 0:

 print(num, "is even.")

else:

 print(num, "is odd.")

4. Explanation of the Program:

We start by taking user input using the input() function and converting it to

an integer using int().

The if statement checks if the remainder of num divided by 2 is equal to 0. If this

condition is True, the code inside the if block is executed, which prints that the

number is even.

If the condition is False, the code inside the else block is executed, which prints

that the number is odd.

5. Nested If-Else Statements: You can also nest if-else statements inside each

other to handle more complex conditions. The inner if-else statements are

indented further.

6. Multiple Conditions: You can use multiple elif (short for "else if") statements to

handle multiple conditions. The program will execute the block of code associated

with the first True condition.

7. Summary: if-else statements are crucial in programming to implement

decision-making logic. They allow us to create programs that respond

dynamically to different scenarios based on conditions. By combining if and else

statements, we can control the flow of our code and make it more versatile and

adaptable.

Input

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 13

num = int(input("Enter a number: "))

Checking if the number is positive or negative

if num >= 0:

 print("The number is positive.")

else:

 print("The number is negative.")

Input

num1 = int(input("Enter the first number: "))

num2 = int(input("Enter the second number: "))

Comparing and finding the largest number

if num1 > num2:

 print(num1, "is larger.")

else:

 print(num2, "is larger.")

Input

score = int(input("Enter your exam score: "))

Checking if the student passed or failed

if score >= 50:

 print("Congratulations! You passed the exam.")

else:

 print("Sorry, you failed the exam. Keep studying!")

Input

age = int(input("Enter your age: "))

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 15

Categorizing age groups

if age < 18:

 print("You are a minor.")

elif age >= 18 and age < 60:

 print("You are an adult.")

else:

 print("You are a senior citizen.")

Input

year = int(input("Enter a year: "))

Checking if the year is a leap year or not

if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):

 print(year, "is a leap year.")

else:

 print(year, "is not a leap year.")

Title: Introduction to Loops in Python

Notes:

1. Introduction to Loops: Loops are an essential concept in programming that

allow us to execute a block of code repeatedly. Python provides two main

types of loops: for and while. Loops are incredibly useful for automating

repetitive tasks and processing collections of data.

2. for Loop: The for loop is used to iterate over a sequence (such as a list, tuple, or

string) or other iterable objects. It allows you to execute a set of statements a

specific number of times.

3. Syntax of for Loop: The general syntax of the for loop in Python is as follows:

for element in sequence:

 # Code to be executed for each element

Printing numbers from 1 to 5

for i in range(1, 6):

 print(i)

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 17

Summing numbers in a list

numbers = [10, 20, 30, 40, 50]

sum = 0

for num in numbers:

 sum += num

print("Sum:", sum)

6. while Loop: The while loop is used to repeatedly execute a block of code as

long as a given condition is True.

7. Syntax of while Loop: The general syntax of the while loop in Python is as

follows:

while condition:

 # Code to be executed while the condition is True

Countdown timer

count = 5

while count > 0:

 print(count)

 count -= 1

print("Blast off!")

User input validation

password = "secret"

while True:

 user_input = input("Enter the password: ")

 if user_input == password:

 print("Access granted!")

 break # Exit the loop

 else:

 print("Access denied. Try again.")

10. Infinite Loops and Loop Control: Be cautious with while loops, as they can

potentially result in infinite loops if not properly controlled. You can use the

break statement to exit a loop prematurely, and the continue statement to skip

the current iteration and proceed to the next.

Arrays and Functions in Python

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 19

1. Introduction to Arrays: An array is a collection of elements, each identified by

an index or a key. In Python, arrays are implemented using lists, which are a

versatile and fundamental data structure. Lists can hold a mix of different data

types and are mutable, meaning you can change their content after creation.

2. Creating and Accessing Lists: Lists are created by enclosing comma-separated

values within square brackets []. Elements in a list can be accessed using their

index, starting from 0.

Creating a list

fruits = ["apple", "banana", "orange", "grape"]

Accessing elements

print(fruits[0]) # Output: apple

print(fruits[2]) # Output: orange

4. Functions in Python: Functions are blocks of organized, reusable code that

perform a specific task. They help improve code modularity, readability, and

reusability. In Python, functions are defined using the def keyword.

5. Syntax of Function Definition: The general syntax of function definition in

Python is as follows:

def function_name(parameters):

 # Function code

 return result

7. Passing Lists to Functions: You can pass lists as arguments to functions,

allowing you to manipulate and process collections of data within the function.

Function to calculate average

def calculate_average(numbers):

 total = sum(numbers)

 average = total / len(numbers)

 return average

R a v i k u m a r R S A L a b , U n i t 4 P a g e | 21

Calling the function

data = [12, 18, 24, 30, 36]

avg = calculate_average(data)

print("Average:", avg) # Output: Average: 24.0

9. Modifying Lists Inside Functions: Lists passed to functions can be modified

within the function. Since lists are mutable, any changes made to the list inside

the function will affect the original list outside the function as well.

10. Return Statements: Functions can return values using the return statement.

You can return multiple values as a tuple.

